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0 Introduction

A Dutch introduction and summary can be found in Appendix A.

0.1 Motivation and goals of this thesis

Over the past few decades, the theory of (symmetric) tensor categories has emerged as a powerful framework
providing a formal backbone for a range of structural approaches to commutative algebra and algebraic
geometry. Symmetric (or more generally, braided) tensor categories provide a categorical setting in which
familiar algebraic objects, such as algebras, modules, and affine group schemes, can be studied in a much
more general fashion (see, for example, [Del07; EGNO15; Ven16; Ven23; Ven24; Cou23a; Cou23b]).

A helpful way to understand the conceptual nature of tensor categories is presented in the standard reference
[EGNO15], which characterises the subject as “a theory of vector spaces or group representations without
vectors,” in analogy with how “ordinary category theory may be thought of as a theory of sets without
elements.”

The study of tensor categories originated with the formulation and investigation of monoidal categories
by Saunders Mac Lane in the 1960s (see the classic text [Lan78]), and was subsequently developed further
by students of Alexander Grothendieck. A major turning point in the modern theory came with the work
of Pierre Deligne [DM82; Del90], whose contributions significantly deepened the understanding of tensor
categories.

Since then, tensor categories have become important objects of study, not only as a framework for various
constructions in algebra and geometry, but also as subjects of structural and classification theory in their
own right (see, for example, [Del02; Ost20; CEO24a; CEOK23; CEO24b]).

In this thesis, we aim to develop the necessary tools to work with non-associative algebras in (braided) tensor
categories. Recently, in [Kan24], Arun S. Kannan constructed exceptional Lie superalgebras by using Lie
algebras in a “non-classical” symmetric tensor category. This realisation is the main motivation behind this
thesis, and it shows that non-associative algebras in more exotic categories are worth studying. Aside from
constructions related to those given by Kannan and to Lie algebras arising from affine algebraic groups (see
[Ven23]), the topic of non-associative algebras in tensor categories remains largely underexplored.

We will mainly be interested in tensor categories over (algebraically closed) fields of positive characteristic,
as this is the setting with more exotic behaviour. A perfect example of this exotic behaviour comes from the
structure theory of so-called pre-Tannakian symmetric tensor categories. Over algebraically closed fields of
characteristic zero, Deligne provided a detailed structural classification of these categories in [Del90; Del02].
More specifically, Deligne showed that any such category fibres over the category of super-vector spaces,
which implies that it is equivalent to the representation category of an affine group scheme in this cate-
gory (equivalently, a Hopf algebra in this category). However, the extension of this classification to positive
characteristic presented (and still presents) significant obstacles. A key development in the positive charac-
teristic case came from Victor Ostrik, who showed in [Ost20] that any symmetric fusion category over an
algebraically closed field of positive characteristic fibres over a particular symmetric tensor category known
as the (universal) Verlinde category Verp, introduced earlier in [GK92; GM94]. This implies that any such
category is equivalent to the representation category of an affine group scheme in Verp (equivalently, a Hopf
algebra).

The Verlinde category arises through the process of semisimplification of the category of finite-dimensional
representations of the linear algebraic group αp. Semisimplification, as a categorical operation, relies on the
fact that tensor categories possess a unique maximal tensor ideal, thereby resembling a local ring. Taking
the quotient of the category by this ideal (which defines a functor) yields a semisimple category called the

9



0 Introduction

semisimplification of the original category. It is precisely this semisimplification process that was used by
Kannan to construct Lie algebras in Verp from classical Lie algebras. As Verp contains the category of
super-vector spaces, Lie superalgebras can then be obtained by projecting into this category. Similarly, a
construction of Kac’s 10-dimensional Jordan superalgebra was given in [EEK25] through the use of a Jordan
algebra in Verp.

We discuss semisimplification in considerable detail in this thesis, going beyond what is currently available
in the literature (see [AKO02; EO21a]). In particular, we provide an explicit description of the morphisms in
the maximal tensor ideals for categories that are not necessarily pivotal. This is important because it allows
us to work with general braided categories that are not necessarily balanced.

Some of our attention will also be devoted to (non-associative) algebras in the Verlinde category, motivated
both by its importance in the structure theory and by Kannan’s work. We will discuss algebras on simple
objects in the Verlinde categories, which turn out to be non-associative algebras (with trivial automorphism
groups). A question that captured our attention during the writing of this thesis is the following: “We know
that any Lie algebra in Verp can be obtained as the semisimplification of an algebra, but can every Lie algebra
in Verp be obtained as the semisimplification of a Lie algebra?” A negative answer to this question would
probably also give a negative answer to [CEO24a, Question 4.6]. Unfortunately, we were not able to answer
this question, and it has therefore not taken up much space in this thesis (although it has taken up much of
our time).

One remark I would like to make about this thesis is that our primary focus is on developing the necessary
background and tools to study non-associative algebras. These tools have not yet been extensively applied
within this thesis, but we hope to pursue such applications in the future.

0.2 Summary

0.2.1 On the novelty of results in this thesis

Before discussing the exact contents of the chapters in this thesis, I would like to address the novelty of the
results. I have tried to provide references for all proofs and definitions that were not developed independently.
However, I have omitted citations for the most elementary definitions and results (particularly those in the
first two chapters), as I assume the reader is already familiar with them. Naturally, the material in the
preliminary part of this thesis is not original. That said, some chapters in the second part contain results
that, to the best of my knowledge, do not appear in the existing literature. Below, I indicate per chapter
which results are novel.

To aid understanding of more technical results and proofs for monoidal categories we make extensive use
of string diagrams. While challenging to typeset in LATEX, these diagrams clarify many arguments and make
proofs a lot easier to read. Proofs involving string diagrams are usually my own, but they are almost always
quite straightforward.

0.2.2 Contents of the chapters

Chapter 1: General Categories

We begin by discussing categories, functors, and natural transformations. Categories can informally be viewed
as “universes” in which certain theories reside. They consist of objects (e.g., groups, rings, modules, topo-
logical spaces, etc.), morphisms (e.g., group homomorphisms, ring homomorphisms, linear maps, continuous
maps, etc.), and a composition on morphisms that is associative and admits a unit. It is immediately evident
that this composition equips a category with a structure reminiscent of monoids, an observation that will be
fundamentally important for semisimplification in later chapters. Functors can be thought of as morphisms
between categories, while natural transformations serve as morphisms between functors.

10



0 Introduction

Next, we briefly discuss limits and colimits, which generalise the notions of products and coproducts. We then
consider categories that do not admit all limits or colimits, and particularly their completion with respect to
limits or colimits. This naturally leads us to the Yoneda and co-Yoneda lemmas.

Functors that preserve limits or colimits are particularly important, and adjoint functors are important ex-
amples. This forms our next topic of discussion.

We conclude the chapter with a discussion on categorification, the process of translating set-theoretic con-
cepts into their categorical analogues.

This chapter does not contain any new results or proofs, and some proofs will be omitted.

I would like to remark that this chapter, as well as the next three chapters, contains some material also
included in a literature study I wrote last year under the supervision of Dr. Jacob C. Bridgeman [Sle24]. That
study, which was about skeletal data for fusion categories, provides additional background on the categories
discussed in the first three chapters, but all the necessary information for this thesis is included here.

Chapter 2: Abelian Categories

In this chapter, we discuss categories whose morphism sets carry an addition. Such categories are called
pre-additive, and if they also admit direct sums and a null object, they are called additive. We then move
on to additive categories that admit kernels and cokernels, which leads us to the notions of Karoubian and
pre-abelian categories. Abelian categories are subsequently introduced as pre-abelian categories in which the
first isomorphism theorem holds.

Short exact sequences play a fundamental role in the study of abelian categories, and they enable us to define
structure-preserving functors between such categories.

We conclude the chapter with a discussion of some of the most important theorems in the theory of abelian
categories: the Jordan–Hölder theorem, the Krull–Schmidt theorem, and Schur’s lemma.

This chapter also does not contain any new results or proofs, and some proofs will be omitted.

Chapter 3: Monoidal Categories

The third and most important chapter of the preliminary part of this thesis discusses monoidal categories.
We begin by introducing the basic theory of monoidal categories, which are, roughly speaking, categories
equipped with a bifunctor ⊗, called the monoidal product or tensor product, that endows the objects of the
category with a monoid structure. In particular, there exists a unit for this operation, called the monoidal unit
object. We also introduce the graphical calculus of string diagrams (see [Sel10]), which will be our preferred
method for reasoning about monoidal categories.

Monoidal categories are designed to resemble the category of vector spaces equipped with the usual tensor
product, and many definitions in the theory are motivated by this analogy. For instance, we will discuss the
notions of duals of objects and traces of morphisms.

We then move on to study braidings on monoidal categories. A braiding is a natural isomorphism that
resembles the swap map v ⊗w 7→ w⊗ v in the category of vector spaces, allowing us to permute objects in
tensor products. Such a braiding endows tensor powers of objects with an action of the braid group, which
factors through the symmetric group if, in addition, the braiding is symmetric, meaning that it is equal to its
own inverse.

The monoidal product, together with a braiding, allows for generalisations of many familiar algebraic struc-
tures such as algebras and modules, which we will discuss in later chapters.

This chapter does not contain any new results, but many of the proofs involving string diagrams are my own,
sometimes inspired by traditional (non-diagrammatic) arguments.

11
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Chapter 4: Tensor Categories

In the final chapter of the preliminary part of this thesis, we discuss tensor categories. Roughly speaking,
these are categories that naturally combine an abelian structure with a monoidal structure equipped with
duals. This implies that monoidal product and dualisation functors should be structure-preserving as functors
between abelian categories.

We begin by examining the set of endomorphisms of the monoidal unit in a monoidal category. When the
category is additionally pre-additive, this set of endomorphisms becomes a ring, and every other hom-set
carries the structure of a bimodule over this ring.

We then turn to categories naturally combining an abelian and a monoidal structure, leading to the notions
of multiring and ring categories. Next we add duals into the mix, which results in multitensor and tensor
categories.

We end the chapter by discussing symmetric tensor categories, and we explain how the action of the sym-
metric group on tensor powers allows us to define symmetric and exterior powers of objects. We also touch
on the classification of pre-Tannakian symmetric tensor categories, as mentioned earlier. Pre-Tannakian
symmetric tensor categories are such that tensor powers of objects “grow subexponentially”.

Chapter 5: Semisimplification

In this chapter, we discuss semisimplification in considerable detail. We begin by reviewing some basic no-
tions from the theory of local rings, and then show how indecomposable objects in abelian categories can
be characterised via local rings: an object in an abelian category is indecomposable, meaning it cannot be
expressed as a direct sum of two non-zero objects, if and only if its endomorphism ring is a local ring. This
characterisation plays a key role in the foundational theory of ideals in abelian categories.

More generally, any pre-additive category is equipped with an addition and a composition operation, mak-
ing it a categorification of a ring. This allows us to define ideals in pre-additive categories as categorified
analogues of ring-theoretic ideals. In particular, we focus on the radical, a special ideal that resembles the
Jacobson radical for rings. We show that the radical contains valuable information about whether a category
is semisimple, i.e. whether every object decomposes into a direct sum of simple objects, objects that are
indecomposable and have no proper subobjects.

We then turn to ideals in pre-additive categories that also carry a monoidal structure, which leads to the
notion of tensor ideals. We demonstrate how duals enable powerful constructions of such ideals and prove
the existence of a unique maximal tensor ideal, which can be built from the radical. This result illustrates an
analogy between tensor categories and local rings. The chapter concludes with descriptions of the morphisms
in this maximal tensor ideal, both in the framework of negligible morphisms from the literature and in a
slightly more general setting.

This chapter contains some original contributions. In particular, Section 5.5.2 is entirely original (though
clearly inspired by existing literature). The material in Sections 5.2-5.3 is largely based on the paper [AKO02],
while Section 5.5.1 is based on [EO21a]. However, our approach to these results differs from those in the cited
works; as a result, many of the statements and proofs differ (sometimes more general, sometimes less), and
are “original” in the sense that they were independently developed, without directly consulting external
sources (though this is not true in all cases).

Chapter 6: Algebras in Monoidal Categories

As mentioned earlier, monoidal structures on categories allow us to construct a wide range of algebraic
objects. This chapter is an example of this phenomenon: we discuss algebras in monoidal categories, which
are objects A equipped with a morphism µ : A⊗A → A called the multiplication. Our treatment is entirely
general, we do not assume that algebras are associative or unital.

12
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In general monoidal categories, that are not pre-additive, algebras are often referred to as magmas, and as
monoids if they are unital and associative. If the category is pre-additive, and the monoidal product is bilinear
on morphisms, then we talk about algebras and unital, associative algebras.

We also discuss modules and ideals for algebras, and explain how the action of the symmetric group on tensor
powers in symmetric monoidal categories leads to a natural generalisation of Lie algebras.

The chapter concludes with a discussion of Hopf algebras and their representation categories, which give rise
to symmetric tensor categories. This is a powerful construction, as demonstrated by the classification of
pre-Tannakian symmetric tensor categories. We then go on to discuss affine group schemes in symmetric
tensor categories.

This chapter contains one original contribution that, to our knowledge, is not found in the literature: the
construction of an ideal generated by a subobject in general non-associative algebras, which can be found in
Section 6.2.3.

Chapter 7: The Verlinde Category

In this very short chapter we discuss the Verlinde category Verp. We start by giving some constructions
for this category as a semisimplification of a “classical” category. In particular, we extensively discuss the
construction of Verp as the semisimplification of the representation category of the affine algebraic group αp

over an algebraically closed field of characteristic p > 0. We then examine the structure of tensor products
in this category, and what this tells us about the tensor product in Verp.

We conclude by discussing subcategories of Verp.

This chapter does not contain any original results.

Chapter 8: Algebras in the Verlinde Category

The final chapter concerns algebras in the Verlinde categoryVerp. We examine the braiding on simple objects
in this category, and explain its implications for algebra structures on these objects. We show that the only
simple objects that admit an algebra structure are those of odd dimension, and that half of these algebras
give rise to what we call generalised Lie algebras.

We also include a brief discussion on the construction of Lie algebras via semisimplification and outline some
of the questions we hope to see answered in future work.

All results in this chapter are original.
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1 General Categories

The following four chapters cover the basic categorical tools we will need later. Almost everything written
in these chapters I have personally learnt from [Lan78], [EGNO15], the nLab website ([aut25d]), some in-
troductory sections of [Med25] written by Prof. Tom De Medts for the course on linear algebraic groups at
Ghent University, a course on category theory I attended in spring 2024 taught by Dr. Ana Agore at the Vrije
Universiteit Brussel (VUB, the book [Ago23] is based on the lecture notes used in this class), and a course on
homological algebra I attended in autumn 2024 taught by Dr. Johanne Haugland at the Norwegian University
of Science and Technology (NTNU, some lecture notes from a different lecturer are available on the course
webpage). A large part of this preliminary part was inspired by a literature study I wrote under the supervi-
sion of Dr. Jacob C. Bridgeman during autumn 2023 - spring 2024 ([Sle24]), and some of the definitions were
taken from there ad verbatim1.

This first chapter will cover some basics of general category theory. For a more thorough introduction, we
refer to [Lan78] or the nLab website. We do not attempt to offer much intuition behind the definitions we
present here, although later sections and chapters should help develop such intuition for those encountering
these ideas for the first time.

1.1 The basics

1.1.1 Categories

Naturally, the first definition in any introductory discussion of category theory should be that of a category
itself.

Definition 1.1.1 (Categories). A category C consists of the following data:

1. A class of objects Ob (C).

2. A class of morphisms, Hom(C), such that every morphism f has a domain (or source) dom(f) = A ∈
Ob (C), and a codomain (or target) codom(f) = B ∈ Ob (C). To every two objects A,B ∈ Ob(C),
we assign a class of morphisms with domain A and codomain B, denoted HomC(A,B) (the notation
C(A,B) is quite common too). We write f : A → B or A f→ B to indicate that f ∈ HomC(A,B).

3. A binary associative composition operation ◦C or ◦ on the morphisms. Let f and g be morphisms, we
call f and g composable if codom(f) = dom(g)2. The composition g ◦ f of these morphisms is then
defined, and it is defined as a morphism with domain dom(f) and codomain codom(g). We thus have,
for all A,B ∈ Ob(C), a map ◦ : HomC(A,B) × HomC(B,C) → HomC(A,C) : (f, g) 7→ g ◦ f . We
impose an associativity condition on the composition:

(f ◦ g) ◦ h = f ◦ (g ◦ h) for all composable f, g, h ∈ Hom(C).

4. For each object A ∈ Ob(C), an identity morphism idA (also denoted by 1A) such that:

f ◦ idA = f, and idA ◦ g = g,

if idA, f and g, idA are composable.
1Although I would like to note that in that text I adopted the convention of writing objects in categories with lowercase letters (because

in that text we were studying the categories in their own regard, we were not really interested in what happens inside them, like
one would be in a text on homological algebra, . . . ), in this text I have chosen to use uppercase letters for the objects.

2We say that f1, f2, . . . are composable if codom(fi) = dom(fi+1) for all i.
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Example 1. Some of the most important examples of categories for us are

1. the category of sets, denoted Set, where the objects are sets and the morphisms are functions between
sets,

2. the category of categories, denoted Cat, where the objects are categories and the morphisms are
functors between categories (as will be defined below),

3. the category of groups, denoted Grp, where the objects are groups and the morphisms are group
morphisms,

4. the category of left (resp. right) modules over some ring R, denoted RMod (resp. ModR), where the
objects are left (resp. right) R-modules and the morphisms are linear morphisms between R-modules,

5. the category of abelian groups, denoted Ab, which is just the category of left Z-modules,

6. the category of vector spaces over some field K, denoted VectK, which is just the category of left
modules over K,

7. the category of finite-dimensional vector spaces over some field K, denoted FinVectK.

Example 2 (The dual of a category). Let C be a category. The dual of this category3, denoted Cdual, is
defined as the category with the following data

1. Ob
(
Cdual

)
= Ob (C),

2. for every f ∈ Hom(C), we have a morphism fdual ∈ Hom(Cdual) such that dom(fdual) = codom(f)
and codom(fdual) = dom(f),

3. gdual ◦Cdual fdual := (f ◦C g)dual for all composable f, g ∈ Hom(C).

The dual category can be interpreted as the category where all the arrows are reversed.

It is common in category theory to speak about the dual of a statement. The idea is that for a class of categories
closed under taking duals (such as abelian categories, see Chapter 2), a statement and its dual (obtained by
formally reversing all the arrows) in this class are logically equivalent. In this text, we will frequently state
both a statement and its dual within a single theorem, but prove only one of them, as the other follows by
dualisation.

Example 3 (Products of categories). Let C and D be two categories. We can define the product C × D as
the category with the following data

1. Ob (C × D) = Ob (C)×Ob (D),

2. for all A,B ∈ Ob (C) and X,Y ∈ Ob (D), we have HomC×D(A×X,B × Y ) = HomC(A,B) ×
HomC(X,Y ), and the composition is defined in the obvious way.

Example 4 (Full subcategories). Let C be a category. A subcategory D ⊆ C is a category D such that
Ob (D) ⊆ Ob (C) and HomD(A,B) ⊆ HomC(A,B) for all A,B ∈ Ob (D). A subcategory D ⊆ C is called
full if HomD(A,B) = HomC(A,B) for all A,B ∈ Ob (D).

There are various notions of the “size” of a category.

Definition 1.1.2. A category C is called

1. locally small if, for any two A,B ∈ Ob (C), HomC(A,B) is a set,

2. essentially small if it is locally small and the class of isomorphism classes of objects is a set,

3. small if both Ob (C) and Hom(C) are sets.
3Often also called the opposite category, but we will reserve the term “opposite” for monoidal categories.
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Remark 1.1.3. Let C be any category, and let A,B ∈ Ob (C). Even though HomC(A,B) might not be a set
(in our definition), we will call HomC(A,B) a hom-set. Many (perhaps most) authors define categories to be
what we would call locally small categories. The categories we will work with in later chapters will always
be locally finite (we will impose restrictions on the hom-sets that will force them to be actual sets), but we
have chosen to keep this introduction quite general.

1.1.2 Morphisms

The emphasis in category theory is on morphisms rather than objects. As the above examples already show,
not all morphisms are created equal, and their properties are very important to understand the structure of
(and relation between) objects.

Definition 1.1.4 (Properties of morphisms). Let C be a category, let A,B ∈ Ob (C), and let f ∈
HomC(A,B).

1. f is called epi or an epimorphism if, for any g1, g2 ∈ Hom(C) such that dom(g1) = dom(g2) =
codom(f) and codom(g1) = codom(g2),

g1 ◦ f = g2 ◦ f implies that g1 = g2. (1.1)

f is called split epi or a split epimorphism if there exists g : codom(f) → dom(f) such that f ◦ g =
idcodom(f) (that is, there exists a section for f ).

2. f is called mono or a monomorphism if, for any g1, g2 ∈ Hom(C) such that dom(g1) = dom(g2) and
codom(g1) = codom(g2) = dom(f),

f ◦ g1 = f ◦ g2 implies that g1 = g2. (1.2)

f is called split mono or a split monomorphism if there exists g : codom(f) → dom(f) such that
g ◦ f = iddom(f) (that is, there exists a retraction for f ).

3. f is called iso or an isomorphism if f is both a split epimorphism and a split epimorphism, or equiva-
lently, if there exists g ∈ HomC(B,A) such that g◦f = idA and f ◦g = idB . We often write f−1 := g.
Two objects are called isomorphic if there exists an isomorphism between them.

In analogy with HomC(A,B), we write EndC(A) = HomC(A,A), IsoC(A,B) for the class of isomorphisms
between two objects A and B, and AutC(A) = IsoC(A,A).

Monomorphisms and epimorphisms allow us to introduce subobjects and quotients in the categorical set-
ting.

Definition 1.1.5 (Subobjects and quotients). Let C be a category, and let A ∈ Ob (C).

1. A subobject ofA is a pair (X, f), consisting of an objectX ∈ Ob (C), and a monomorphism f : X → A.
Provided with two subobjects (X, f) and (Y, g) of A, (X, f) is said to be contained in (Y, g) if there
exists a (necessarily unique) morphism f : X → Y such that g ◦ f = f .

2. A quotient of A is a pair (X, f), consisting of an object X ∈ Ob (C), and an epimorphism f : A → X .
Provided with two quotients (X, f) and (Y, g) of A, (Y, g) is said to be a quotient of (X, f) if there
exists a (necessarily unique) morphism g : X → Y such that g ◦ f = g.

Subobjects and quotients define categories.

Definition 1.1.6. Let C be a category, and let A ∈ Ob (C). The categories Sub(A) and Quot(A) are defined
as

1. Ob
(
Sub(A)

)
= {subobjects (X, f) of A} and Ob

(
Quot(A)

)
= {quotients (X, f) of A},

2. HomSub(A)

(
(X, f), (Y, g)

)
= {f : X → Y | g ◦ f = f} and HomQuot(A)

(
(X, f), (Y, g)

)
= {g :

X → Y | g = g ◦ f}.
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Note that
∣∣∣HomSub(A)

(
(X, f), (Y, g)

)∣∣∣ , ∣∣∣HomQuot(A)

(
(X, f), (Y, g)

)∣∣∣ ≤ 1 because we are working with
monomorphisms and epimorphisms respectively.

It is not hard to check that these are indeed categories.

In some categories there exist very special objects that relate to every other object in a unique way.

Definition 1.1.7 (Initial and final objects). Let C be a category, and let A be an object of C. A is called
initial (resp. final) if there exists exactly one morphism from (resp. to) A to (resp. from) every object of C
(including itself). It is easy to prove that initial and final objects are unique up to unique isomorphism.

A null object is an object that is both initial and final. Note that every initial or final object is null once there
exists one null object.

Remark 1.1.8. Let C be a category, let A ∈ Ob (C), and let D ⊆ Sub(A) be some full subcategory; that is,
a collection of subobjects of A. If D has an initial object, then this object is contained in all subobjects in
D. This thus implies that initial objects in categories of subobjects are “intersections” of all the subobjects in
that category.

1.1.3 Functors

What makes category theory so powerful is that a wide range of mathematical structures naturally come
equipped with suitable notions of morphisms, thus making category theory into a tool that can be used on
this whole range of structures. It makes sense to also define a notion of morphisms between categories,
effectively turning category theory into a subject that can itself be studied categorically.

Definition 1.1.9 (Functors). Let C and D be categories. A (covariant) functor F : C → D between C and
D is a pair of maps

FOb : Ob(C) → Ob(D) and FHom : Hom(C) → Hom(D),

such that for any A,B ∈ Ob (C) and any two composable f, g ∈ Hom(C):

1. f ∈ HomC(A,B) implies that FHom(f) ∈ HomD(FOb(A), FOb(B)),

2. FHom(idA) = idFOb(A) for all A ∈ Ob (C)),

3. FHom(g ◦ f) = FHom(g) ◦ FHom(f).

A contravariant functor F between C and D is a covariant functor F : Cdual → D. We will refrain from
writing sentences such as “A contravariant functor F : C → D . . . ”, but we will always explicitly indicate
the dual (perhaps rendering the term contravariant unnecessary).

A functor from a product of two categories is sometimes called a bifunctor.

Example 5 (Forgetful functors). Many categories come equipped with natural notions of so-called for-
getful functors, these are functors that are defined by “forgetting” some of the structure of the objects. For
example, many categories come with a forgetful functor to Set by mapping the objects (groups, modules,
topological spaces, . . . ) to the underlying sets and the morphisms to the underlying set maps. There is also a
forgetful functor from Ab to Grp, or a forgetful functor from VectK → Ab, . . .

We will denote a forgetful functor from C to D (it will always be clear what this functor should be) as
ForgetfulDC .

Example 6 (Free functors). There is also a notion of free functors FreeDC which map objects in the category
C into free objects on that object in D, this notion is linked to the notion of forgetful functors as we will see
later. For example, we have the forgetful functors ForgetfulSetGrp,Forgetful

Set
VectK

, and at the same time we
also have free functors FreeGrp

Set ,FreeVectK
Set mapping a set to the free group/vector space on that set.
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Example 7 (Hom-functors). Let C be a locally small category, and let A ∈ Ob (C) be an object. We can
define two hom-functors (a covariant and a contravariant one)

HomC(A,−) : C → Set :B 7→ HomC(A,B) , and
(f : B → C) 7→ (HomC(A, f) = f ◦ − : HomC(A,B) → HomC(A,C)),

(1.3)

HomC(−, A) : Cdual → Set :B 7→ HomC(B,A) , and
(f : B → C) 7→ (HomC(f,A) = − ◦ f : HomC(C,A) → HomC(B,A)).

(1.4)

Together these combine into a hom-bifunctor

HomC(−,−) : Cdual × C → Set. (1.5)

For morphisms, we have already introduced the notions of monomorphisms, epimorphisms, and isomor-
phisms, and we can introduce similar notions for functors between categories.

Definition 1.1.10. Let F : C → D be a functor between two categories C and D, and let A,B ∈ Ob (C). F
induces a map FA→B := FHom|HomC(A,B) : HomC(A,B) → HomD

(
FOb(A), FOb(B)

)
.

We can then define some special properties that functors can have:

1. F is called faithful if FA→B is injective for all A,B,

2. F is called full if FA→B is surjective for all A,B,

3. F is called fully faithful if FA→B is bijective for all A,B,

4. F is called dense if every isomorphism equivalence class of D has a representative in the image of FOb

(that is, for each Y ∈ Ob (D), there exists an X ∈ Ob (C) such that Y ∼= F (x)),

5. F is called an equivalence if F is both fully faithful and dense.

Remark 1.1.11. From here on, we will write F instead of FOb and FHom.

1.1.4 Natural transformations

Continuing our journey of making category theory into something that can be studied categorically itself, it
is now time to introduce morphisms between functors.

Definition 1.1.12 (Natural transformations). Let C andD be categories, and letF,G : C → D be functors
between these categories. A natural transformation η between F and G, denoted η : F → G, is a class of
morphisms in Hom(D)

ηA : F (A) → G(A), for all A ∈ Ob (C) ,

such that the following diagram commutes for all A,B ∈ Ob (C) and f ∈ HomC(A,B):

F (A) F (B)

G(A) G(B)

F (f)

ηA ηB

G(f)

. (1.6)

Example 8 (Functor categories). Let C andD be two categories. Natural transformations between functors
make the class of functors from C to D into a category, showing that they are a suitable notion of morphisms
of functors. We define the functor category Funct(C,D) as the category with the following data

1. Ob
(
Funct(C,D)

)
= {functors C → D},

2. for two functorsF,G : C → D, we defineHomFunct(C,D)(F,G) = {natural transformations C → D},
and the composition of natural transformations is defined pointwise on components.
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1.2 Limits and colimits

Next, we will discuss limits and colimits. Many important constructions in mathematics are examples of
limits or colimits. Some examples of explicit limit constructions that we will encounter are products and
coproducts, kernels and cokernels (see Chapter 2), and the ideal of an algebra generated by a subobject (see
Chapter 6).

Definition 1.2.1 (Limits and colimits). Let I, C be two categories (usually I is assumed to be small, as we
are usually only interested in small limits and colimits), and let F : I → C be a functor. A cone (resp. cocone)
on this functor is a pair (L, {pA : L → F (A) | A ∈ Ob (I)}) (resp. (L, {iA : F (A) → L | A ∈ Ob (I)})) of
an object L ∈ Ob (C), and morphisms pA : L → F (A) (resp. iA : F (A) → L) for every A ∈ Ob (I), such
that the following diagram commutes for all A,B ∈ Ob (I) and f ∈ HomI(A,B)

L

F (A) F (B)

pA pB

F (f)

, resp.
L

F (A) F (B)

iA

F (f)

iB . (1.7)

A morphism between two cones (resp. cocones) (C, {rA}A∈Ob(I)), (D, {sA}A∈Ob(I)) is a morphism f :
C → D such that sA ◦ f = rA (resp. f ◦ rA = sA) for all A ∈ Ob (I).

We then obtain the category of cones (resp. cocones) on F .

1. A limit for F , denoted lim(F ), is a final object in the category of cones on F .

2. A colimit for F , denoted colim(F ), is an initial object in the category of cocones on F .

A limit (resp. colimit) is called small or finite whenever I is small or finite.

Example 9 (Products and coproducts). Let I be some set, and define I to be the discrete category on
this set (that is, the category with Ob (I) = I , and the only morphisms are identity morphisms). Let C be
any category, a functor F : I → C is then just a family of objects {Ai}i∈I indexed by I . A limit of such a
functor is then called a product of {Ai}i∈I , and is denoted

∏
i∈I Ai, and a colimit of such a functor is called

a coproduct of {Ai}i∈I , and is denoted
∐

i∈I Ai.

Example 10 (Equalisers and coequalisers). Let I be the category with two objects ⋆1, ⋆2, and two non-
identity morphisms u, v : ⋆1 → ⋆2. Let C be any category, a functor F : I → C is then a choice of two
objects A,B ∈ Ob (C) and two morphisms f, g : A → B. A limit of such a functor is called an equaliser of
f, g, and a colimit of such a functor is called a coequaliser of f, g.

Example 11 (Pullbacks and pushout). Let I be the category with three objects ⋆1, ⋆2, ⋆3 and two mor-
phisms u, v : ⋆1, ⋆2 → ⋆3 (resp. u, v : ⋆3 → ⋆1, ⋆2), i.e. a category that looks like this

⋆1 ⋆2

⋆3

u v
, resp.

⋆1 ⋆2

⋆3

u v
. (1.8)

Let C be any category, a functor F : I → C is then a choice of three objects A,B,C ∈ Ob (C) and two
morphisms f, g : A,B → C (resp. f, g : C → A,B). A limit (resp. a colimit) of such a functor is called a
pullback (resp. a pushout) of f, g.

Definition 1.2.2 (Complete and cocomplete categories). Let C be a category. C is called complete (resp.
cocomplete) if all small limits (resp. colimits) exist, which means that every functor from a small category to
C has a limit (resp. colimit).

C is called finitely complete (resp. finitely cocomplete) if all finite limits (resp. finite colimits) exist.
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Theorem 1.2.3. A category C is

1. finitely complete (resp. finitely cocomplete) if C has all equalisers and all finite products (resp. finite
coproducts),

2. complete (resp. cocomplete) if C has all equalisers and all small product (resp. small coproducts).

Proof omitted. See [Ago23, Theorem 2.4.2] or [Lan78, § V.2]. ■⧸

Proposition 1.2.4. Let C,D be categories, and let F : C → D be a functor that reflects isomorphisms (that is,
if F (f) is an isomorphism, then also f is an isomorphism).

1. If C is finitely complete (resp. finitely cocomplete), and F preserves finite limits (resp. finite colimits), then
F also reflects finite limits (resp. finite colimits).

2. If C is complete (resp. cocomplete), and F preserves small limits (resp. colimits), then F also reflects small
limits (resp. colimits).

Proof omitted. See [Ago23, Proposition 2.5.9]. ■⧸

1.3 (Co)completions of categories and the Yoneda lemmas

In this section, we will discuss (co)completions of categories, that is their closure under taking (co)limits. In
the process of doing this we will also discuss the most famous result in category theory: the Yoneda lemma.

1.3.1 Free (co)completion of categories and the Yoneda lemmas

To construct a “closure” of a category under a specified class of (co)limits, we have to find a complete category
that contains the original category as a subcategory. The Yoneda lemma will provide us with the right tools
to find such a category.

Theorem 1.3.1 (Yoneda lemma). Let C be a locally small category, let F : C → Set be a functor, and let A
be an object of C. The map

ξA,F : HomFunct(C,Set)(HomC(A,−), F ) → F (A) : η 7→ ηA(idA) (1.9)

is a natural isomorphism (in both A and F ) with inverse

ξ−1
A,F : F (A) → HomFunct(C,Set)(HomC(A,−), F ) : x 7→ F (−)(x). (1.10)

Proof. Let B ∈ Ob (C), let f : A → B be in C, and let η : HomC(A,−) → F be a natural transformation.
We chase the element idA ∈ HomC(A,A) around a naturality square

HomC(A,A) HomC(A,B) idA f

F (A) F (B) ηA(idA) ηB(f)

f◦−

ηA ηB

F (f)

. (1.11)

We see that F (f)(ηA(idA)) = ηB(f), or thus F (−)(ηA(idA)) = η. The other way around, F (idA)(x) =
idF (A)(x) = x, which implies that our maps are indeed inverses.

For naturality in A, let f : A → B be a morphism as in the above. The diagram

HomFunct(C,Set)
(
HomC(A,−) , F

)
F (A) η ηA(idA)

HomFunct(C,Set)
(
HomC(B,−) , F

)
F (B) η(− ◦ f) F (f)(ηA(idA))

ξA,F

F (f)

ξB,F

(1.12)
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commutes as ηB(idB ◦ f) = ηB(f) = F (f)(ηA(idA)) due to the above.

For naturality in F , let F,G : C → Set be two functors and let α : F → G be a natural transformation
between them. The diagram

HomFunct(C,Set)
(
HomC(A,−) , F

)
F (A) η ηA(idA)

HomFunct(C,Set)
(
HomC(A,−) , G

)
G(A) α ◦ η αA(ηA(idA))

α◦−

ξA,F

αA

ξA,G

(1.13)

commutes trivially. ■

The Yoneda lemma can be used to embed the original category into a functor category.

Definition 1.3.2 (Yoneda embedding). Let C be a locally small category. We define the Yoneda embedding
as the functor

Yoneda : C → Funct(Cdual,Set) : A 7→ HomC(−, A) and f 7→ f ◦ −. (1.14)

The Yoneda embedding on Cdual is sometimes also called the contravariant Yoneda embedding

Yonedacontra : Cdual → Funct(C,Set) : A 7→ HomC(A,−) and f 7→ − ◦ f. (1.15)

Corollary 1.3.3. Let C be a locally small category. The Yoneda embedding is a fully faithful functor.

Proof. It is immediately clear that this functor is faithful as Yoneda(f)A(idA) = f ◦ idA = f .

Let η : HomC(−, A) → HomC(−, B) be any natural transformation. Using the Yoneda lemma 1.3.1, we find
η = HomC(−, B) (ηA(idA)) = ηA(idA) ◦ −, which shows that η is of the form f ◦ − for some morphism
f . ■

We will now show that this functor category is actually cocomplete, and that it is universal with this prop-
erty.

Definition 1.3.4 (Free (co)completion). Let C be a locally small category. The Yoneda embedding

Yoneda : C → Funct(Cdual,Set) (1.16)

is called the free cocompletion of C.

The free completion of C is the dual of the contravariant Yoneda embedding; that is,

Yonedadualcontra : C → Funct(C,Set)dual. (1.17)

Definition 1.3.5 (Representable functors). Let C be a category. A covariant (resp. contravariant) functor
F : C → Set is called representable if it is naturally isomorphic to a covariant (resp. contravariant) hom-
functor. Corollary 1.3.3 shows that C is equivalent to the full subcategory of representable functors in the
free cocompletion.

Theorem 1.3.6. Let C be a locally small category and let D be a (co)complete category. The functor category
Funct(C,D) is (co)complete.

As a consequence, the free (co)completion of a locally small category is (co)complete.
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Proof. We will show the statement for cocomplete categories, it is then enough to show that this category
has all coproducts and coequalisers (Theorem 1.2.3). Let (Fi)i∈I be a family of functors C → D, define
F :=

∐
i∈I Fi as the functor which maps objects A to

∐
i∈I Fi(A) and morphisms f : A → B to the

unique morphism F (f) (induced by the fact that
∐

i∈I Fi(A) is the coproduct of (Fi(A))i∈I in D) making
the following diagram commute for all i ∈ I

∐
i∈I Fi(A)

∐
i∈I Fi(B)

Fi(A) Fi(B)

∃!F (f)

incFi(A)

Fi(f)

incFi(B)
. (1.18)

For i ∈ I , we define
incFi

: Fi → F as (incFi
)A = incFi(A) . (1.19)

Let G be a second functor equipped with natural transformations jFi
: Fi → G. For A ∈ Ob (C) we then

obtain a unique morphism ηA : F (A) → G(A) making the following diagram commute for all i ∈ I

F (A) G(A)

Fi(A)

∃!ηA

incFi(A)
(jFi

)A
. (1.20)

These uniquely defined morphisms define a natural transformation η : F → G becauseG(f)◦ηA◦incFi(A) =
G(f) ◦ (jFi

)A = (jFi
)B ◦ Fi(f) = ηB ◦ incFi(B) ◦Fi(f) = ηB ◦ F (f) ◦ incFi(A).

Similarly, one shows that the pointwise coequaliser of two natural transformations is the coequaliser of these
two natural transformations. ■

Before we can show the universal property of the free (co)completion of a category, we have to prove the co-
Yoneda lemma. The proof for this theorem was adapted from this github page by Chase Meadors ([Mea]).

Theorem 1.3.7 (co-Yoneda lemma, [Lan78, § III.7, Theorem 1]). Let C be a locally small category and let
F : Cdual → Set be a (contravariant) functor. F is a (not necessarily small) colimit of representable functors.

More explicitly, we define a category ∫F with

1. Ob (∫F ) = {(A, a) | A ∈ Ob (C) , a ∈ F (A)},

2. Hom∫F
(
(A, a), (B, b)

)
= {f ∈ HomC(A,B) | F (f)(b) = a}.

We then have
F = colim(Yoneda ◦πF ), (1.21)

where
πF = ForgetfulC∫F : ∫F → C : (A, a) 7→ A and f 7→ f. (1.22)

Proof. We have to prove that F is the colimit of the functor Yoneda ◦πF , hence that there exist cocone
morphisms

inc(A,a) : Yoneda(πF ((A, a))) = Yoneda(A) = HomC(−, A) → F (1.23)

that are initial in the category of cocones on Yoneda ◦πF .

We define
(inc(A,a))B : HomC(B,A) → F (B) : f 7→ F (f)(a). (1.24)

It is easy to check that this defines a natural transformation inc(A,a): for B,C ∈ Ob (C) and g : B → C

HomC(C,A) F (C) f F (f)(a)

HomC(B,A) F (B) f ◦ g F (f ◦ g)(a) = F (g)(F (f)(a))

−◦g

(inc(A,a))C

F (g)

(inc(A,a))B

. (1.25)
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The collection of natural transformations {inc(A,a) | (A, a) ∈ Ob (∫F )} defines a cocone; for morphisms
f : (A, a) → (B, b) and g : C → A, we have

((inc(B,b))C ◦Yoneda(f))(g) = (inc(B,b))C(f ◦ g) = F (f ◦ g)(b) = F (g)(a) = (inc(A,a))C(g). (1.26)

Let (G, {j(A,a)}(A,a)∈Ob(∫F )) be a second cocone on Yoneda ◦πF . We define

j : F → G through jA : F (A) → G(A) : a 7→ (j(A,a))A(idA). (1.27)

We will now show that j is a natural transformation F → G. For f : A → B, we have to prove that the
following diagram commutes

F (B) G(B) b (j(B,b))B(idB)

F (A) G(A) F (f)(b) (j(A,F (f)(b)))A(idA) = G(f)((j(B,b))B(idB))

F (f)

jB

G(f)

jA

. (1.28)

We know that (j(B,b))A(f) = (j(A,F (f)(b)))A(idA) due to the commutativity of

HomC(−, A) HomC(−, B) idA f

F (j(A,F (f)(b)))A(idA) = (j(B,b))A(f)

f◦−

j(A,F (f)(b))

j(B,b)

, (1.29)

and we also know that the following diagram commutes

HomC(B,B) HomC(A,B) idB f

G(B) G(A) (j(B,b))B(idB) G(f)((j(B,b))B(idB)) = (j(B,b))A(f)

(j(B,b))B

−◦f

(j(B,B))A

G(f)

.

(1.30)

It is now clear that the commutativity (1.29) and (1.30) imply the naturality of j (1.28).

The commutativity of (1.29) also shows that j makes the following diagram commute for all (A, a) ∈ Ob (∫F )

HomC(−, B)

F G

inc(B,b)
j(B,b)

j

. (1.31)

Finally, we conclude that j is unique with this property because a ∈ F (A) is equal to (inc(A,a))A(idA). ■

We are now ready to prove the universal property of the free (co)completion of a category, see this nLab page
([aut25a]).

Theorem 1.3.8 (Universal property of the free (co)completion). Let C be a locally small category and let
D be any cocomplete category equipped with a functor F : C → D. There exists a functor (unique up to unique
natural isomorphism)

F : Funct(Cdual,Set) → D (1.32)

such that

1. F preserves all colimits,
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2. the following diagram commutes up to natural isomorphism

C Funct(Cdual,Set)

D
F

Yoneda

F
. (1.33)

Dually, let D be any complete category equipped with a functor F : C → D. There exists a functor (unique up
to natural isomorphism)

F : Funct(C,Set)dual → D (1.34)
such that

1. F preserves all limits,

2. the following diagram commutes up to natural isomorphism

C Funct(C,Set)dual

D
F

Yonedadualcontra

F
. (1.35)

Sketch of proof. The universal property (1.33), and the fact that the co-Yoneda lemma 1.3.7 shows that any
functor in Funct(Cdual,D) is a colimit of representable functors, suggest a definition for F : for any H :
Cdual → D, we find a functor πH : ∫ H → C such that H = colim(Yoneda ◦πH), we now define

F (H) = colim(F ◦ πH). (1.36)

In fact, F is forced to be defined this way (up to natural isomorphism) because F has to preserve colimits.
Let H1, H2 : Cdual → D be two functors, and let α : H1 → H2 be a natural transformation between them.
Then α is the unique natural transformation induced by the following colimit diagram for H1

H1 H2

(Yoneda ◦πH1
)(A, a) = HomC(−, A) (Yoneda ◦πH2

)(A,αA(a)) = HomC(−, A)

α

inc(A,a)=H1(−)(a)

id

inc(A,αA(a))=H2(−)(αA(a)) . (1.37)

We define F (α) as the unique morphism making the following colimit diagram commute

F (H1) F (H2)

(F ◦ πH1
)(A, a) = F (A) (F ◦ πH2

)(A,αA(a)) = F (A)

∃!F (α)

idF (A)

. (1.38)

This is clearly the only possible definition of F , as we can apply any candidate to the above commutative
diagram (1.37). ■⧸

1.3.2 Projective and inductive (co)completions of categories

In practice one often doesn’t need the full free (co)completion of a category, but just the (co)completion under
limits from categories that are “ordered”. The reason these constructions are so important, as we will see in
later chapters, is that they ensure every filtration has a colimit. A filtration is a chain of subobjects; that is, a
sequence of monomorphisms

· · · An+1 An An−1 · · ·in+2 in+1 in in−1 (1.39)

When interpreted in familiar categories such as Set,Ab,RMod, this corresponds to a chain of inclusions
An+1 ⊆ An ⊆ An−1. To be able to apply Zorn’s lemma, we want such chains to have an initial object (recall
Remark 1.1.8), or equivalently, a colimit.
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Definition 1.3.9 ((Co)filtered categories). Let C be a category.

1. C is called filtered if,

a) for any two objects A,B ∈ Ob (C), there exists an object C ∈ Ob (C) together with morphisms
A → C and B → C ,

b) for any two morphisms f, g : A → B, there exists an object C ∈ Ob (C) and a morphism
h : B → C such that h ◦ f = h ◦ g.

A colimit of a functor is called filtered if the domain category is filtered.

2. C is called cofiltered if,

a) for any two objects A,B ∈ Ob (C), there exists an object C ∈ Ob (C) together with morphisms
C → A and C → B,

b) for any two morphisms f, g : A → B, there exists an object C ∈ Ob (C) and a morphism
h : C → A such that f ◦ h = g ◦ h.

A limit of a functor is called cofiltered if the domain category is cofiltered.

Remark 1.3.10. Filtered categories are “categorifications” (see § 1.5) of partially ordered sets.

Definition 1.3.11 (Inductive cocompletion and projective completion). Let C be a locally small cate-
gory.

1. The inductive cocompletion or ind-cocompletion, denoted Cind, is the full subcategory of the free cocom-
pletion that consists of filtered colimits of representable functors (that is, colimits of functors from a
filtered category to the full subcategory of representable functors in the free cocompletion).

2. The projective completion or pro-completion, denoted Cpro, is the full subcategory of the free completion
that consists of cofiltered limits of representable functors (that is, limits of functors from a cofiltered
category to the full subcategory of representable functors in the free completion).

Remark 1.3.12. In the literature (see, for example, [EGNO15; Ven23]), what we refer to as ind-cocompletions
are often simply called ind-completions.

The inductive (resp. projective) cocompletion (resp. completion) of a category can be seen as the free filtered
cocompletion (resp. completion), in analogy with the above section.

Theorem 1.3.13 (Universal property of the ind- and pro-completion). Let C be a locally small category,
and let D be any category that is cocomplete with regard to filtered functors, equipped with a functor F : C → D.
There exists a functor (unique up to unique natural isomorphism)

F : Cind → D (1.40)

such that

1. F preserves all filtered colimits,

2. the following diagram commutes up to natural isomorphism

C Cind

D
F

Yoneda

F
. (1.41)

Dually, let D be any category that is complete with regard to filtered functors, equipped with a functor F : C →
D. There exists a functor (unique up to natural isomorphism)

F : Cpro → D (1.42)

such that
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1. F preserves all filtered limits,

2. the following diagram commutes up to natural isomorphism

C Cpro

D
F

Yonedadualcontra

F . (1.43)

Proof omitted. The proof is analogous to the one sketched for Theorem 1.3.8. ■⧸

Example 12. Let C be a category which has all finite coproducts and all coequalisers (hence, by Theo-
rem 1.2.3, all finite colimits), Cind is then the category one obtains by adding all infinite coproducts into the
mix too.

For example, we have FinVectindK = VectK. Indeed: given a vector space V ∈ Ob (VectK), define
FinSub(V ) as the full subcategory of Sub(V ) consisting of all finite-dimensional subobjects. By consid-
ering spans of two subspaces, we see that this category is filtered. It is then clear that V , equipped with the
inclusions, is the colimit of the canonical functor FinSub(V ) → VectK.

This shows that VectK (or, equivalently, its category of representable functors) consists of colimits of objects
in FinVectK (or equivalently its category of representable functors). As VectK is cocomplete, we can then
use the universal property of ind-cocompletions to see that FinVectindK = VectK.

Similarly, one shows that the ind-cocompletion of the category of finitely generated groups is the category
of groups, that the ind-cocompletion of finitely generated modules is the category of modules, and so forth.

Remark 1.3.14 (Intersections in a categorical setting). Let C be an arbitrary category, and let A ∈ Ob (C). Fol-
lowing Remark 1.1.8, we know that collections of subobjects of A are full subcategories of Sub(A). Suppose
that a full subcategory D ⊆ Sub(A) contains (A, idA). This category is then filtered. As a result, we know
that the canonical functor D → C has a colimit in Cind. Let (∩D, {incX | (X, iX) ∈ Ob (D)}) be the colimit
for this functor. For any (X, iX) in D, we then know that incA = iX ◦ incX . As a consequence, we find
that incA ◦g1 = incA ◦g2 implies that incX ◦g1 = incX ◦g2 for all X . We conclude that incA is a monomor-
phism, and hence that all colimit morphisms incX are monomorphisms. It is then clear that (∩D, incA) is
the intersection of D.

We conclude that Cind contains all intersections of collections of subobjects.

1.4 Adjoint pairs

Above we have already seen examples of forgetful functors and free functors, it turns out that these notions
are linked, and can be generalised in the notion of adjoint pairs of functors.

Definition 1.4.1 (Adjoint functors). Let C,D be categories, and let F : C → D, G : D → C be functors.
(F,G) is called an adjoint pair, or an adjunction, if there exists a natural isomorphism

Θ : HomD
(
F (−),−

)
→ HomC

(
−, G(−)

)
. (1.44)

If (F,G) is an adjoint pair, then F is called the left adjoint functor to G, and G is called the right adjoint
functor to F .

Theorem 1.4.2 (Unit and counit of adjunctions). Let C,D be categories, and let F : C → D, G : D → C
be functors. (F,G) is an adjoint pair if and only if there exist natural transformations

η : idC → G ◦ F called the unit, (1.45)
ε : F ◦G → idD called the counit, (1.46)
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such that for all C ∈ Ob (C) , D ∈ Ob (D)

idF (C) = εF (C) ◦ F (ηC) and idG(D) = G(εD) ◦ ηG(D). (1.47)

Proof omitted. See [Ago23, Theorem 3.5.1]. ■⧸

Example 13 (Quasi-inverses). Let C,D be two categories, and let F : C → D, G : D → C be quasi-
inverses; that is, functors such that there exist natural isomorphisms η : idC → G ◦ F, ε : F ◦ G → idD .
(F,G) and (G,F ) are then two adjoint pairs.

Example 14 (Free-forgetful adjunctions). A right adjoint functor is sometimes also called a forgetful
functor, and a left adjoint functor is then called a free functor. For example, let us consider the forgetful
functor ForgetfulSetGrp : Grp → Set and the free functor FreeGrp

Set : Set → Grp. We define

η : idSet → ForgetfulSetGrp ◦ FreeGrp
Set through ηX(x) = x, (1.48)

ε : FreeGrp
Set → ForgetfulSetGrp → idGrp through εG(⟨g1, . . . , gn⟩) = g1 · · · gn. (1.49)

We then find (
εFreeGrp

Set (X) ◦ Free
Grp
Set (ηX)

)
(⟨x1, . . . , xn⟩) = ⟨x1, . . . , xn⟩, (1.50)(

ForgetfulSetGrp(εG) ◦ ηForgetfulSet
Grp(G)

)
(g) = g, (1.51)

which shows that we have an adjoint pair

(FreeGrp
Set ,ForgetfulSetGrp). (1.52)

Theorem 1.4.3. Let C,D be categories, and let F : C → D, G : D → C be functors such that (F,G) is an
adjoint pair. F preserves small colimits, and G preserves small limits.

Proof omitted. See [Ago23, Theorem 3.4.4]. ■⧸

1.5 Categorification

To conclude our section on general category theory, we would like to discuss categorification. Roughly
speaking, this term can be taken at face value, that is: interpreting or enriching mathematical structures in
categorical terms, even when they are not initially framed that way. We will discuss two kinds of categori-
fication: horizontal and vertical categorification. Horizontal categorification can be seen as an example of
the interpretation of mathematical structures in categorical terms, and vertical categorification can be seen
as an example of the enrichment of mathematical structures into a categorical setting.

1.5.1 Horizontal categorification or oidification

Sometimes one realises that certain concepts in mathematics can be interpreted as categories with a single
object and some additional properties. One can then construct the oidification or horizontal categorification
of this concept by allowing the category to have more than one object, but still requiring the other properties
to hold.

Example 15. Let us consider monoids, which we will assume to have a unit. A monoid is a set equipped with
an associative binary operation that has a unit, in other words: it is a (locally small) category with one object
by defining the morphisms to be the elements of the monoid and the composition to be the binary operation.
The oidification of the theory of monoids is thus just the theory of (locally small) general categories4.

4Typically one adds oid to the name of the object in question when considering the oidification (groups lead to groupoids, rings to
ringoids, . . . ), which would lead one to call categories the somewhat funny name monoidoids.
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Example 16 (Groupoids). A group is just a (locally small) category with a single object in which all
morphisms are invertible (i.e. isomorphisms), a groupoid is then any (locally small) category in which all
morphisms are invertible.

Oidification often leads to the curious phenomenon that operations that were originally defined on every
pair, triple, . . . , will suddenly only be defined partially (i.e. only on certain tuples but not on the other ones).
This is because, in the one-object setting all morphisms are composable, whereas in the many-object setting
composability is not guaranteed. As a result, proving (meaningful) theorems (and even finding them) about
oidifications is not always straightforward.

Given a construction on some objects for which an oidification exists (and is known), the corresponding
oidification of this construction can often be found by letting the same properties hold whenever they make
sense.

Example 17 (Normal subgroupoids). A normal subgroup H of a group G is a subgroup H ≤ G such that
g−1Hg ⊆ H for all g ∈ G. Similarly, a normal subgroupoid H of a groupoid G is a subgroupoid H ⊆ G
(which in the categorical setting implies that it is a subcategory) such that g−1Hg ⊆ H for all g ∈ G, where
g−1Hg = {g−1hg | h ∈ H such that the multiplications make sense}.

1.5.2 Vertical categorification

The concept of (vertical5) categorification is typically more involved than oidification, and we will only dis-
cuss the general idea in broad strokes here. Roughly speaking, (vertical) categorification refers to replacing
set-theoretic constructions and theorems by category-theoretic analogues (that is, constructions and theo-
rems in Set are lifted to constructions and theorems in Cat). This (usually) involves lifting sets to categories,
and lifting functions between sets to functors between categories satisfying some “coherence” or “compati-
bility” conditions (we will see examples of these in Chapter 3) enforced by natural isomorphisms (the idea
behind these is that they replace equalities).

The following Table 1.1, taken from This Week’s Finds in Mathematical Physics (Week 121) by John Baez
([Bae98]), shows what common set-theoretic concepts translate to after categorification:

Set Cat
Sets Categories

Elements of sets Objects of categories
Equations between elements Isomorphisms between objects

Functions Functors
Equations between functions Natural isomorphisms between functors

Table 1.1: The dictionary of categorification: it allows us to prepare a cookbook of recipes in Cat from the
cookbook of recipes in Set.

Contrary to oidification, it is often much harder to construct categorifications of certain well-known objects
or constructions (it is usually quite hard to find the correct coherence conditions and prove some coherence
theorem). However, once one has a coherence theorem, the theory of the objects or constructions translates
to the categorification in a straightforward way.

5We will sometimes omit the word vertical when considering vertical categorification, as we will refer to horizontal categorification
as oidification.
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2 Abelian Categories

In the first chapter we discussed general categories. We are now ready to start looking at specific flavours of
categories, eventually combining them in the very flavourful world of symmetric tensor categories.

We begin with perhaps the most well-known flavour: abelian categories. In [Lan78, Chapter VIII], abelian
categories are introduced as categories satisfying a set of axioms that “suffice to prove all the facts about com-
muting diagrams and connecting morphisms which are proved in Ab by methods of chasing elements.”

Many details will be omitted in this section, as we assume that the reader is already familiar with the material
presented here. We will present the main definitions, but will not discuss most theorems and proofs (these
can be found in any text on homological algebra, and are also extensively discussed in my earlier literature
study [Sle24]).

Everything in this chapter can be found in [Lan78] or [EGNO15].

2.1 Pre-additive and additive categories

2.1.1 Pre-additive categories

One straightforward way to make categories more flavourful is by enriching the hom-sets. Enriched cate-
gories have a formal definition, but we will not need this definition in this text (they are, however, discussed
in [Sle24]). For our purposes, it suffices to know that a category C enriched over another (monoidal, see
Chapter 3) category D is one in which the hom-sets of C are actually objects of D, and composition is given
by a morphism in D, meaning that it respects the structure of D.

Definition 2.1.1 (Pre-additive categories). A pre-additive category, or Ab-enriched category, is a category
C in which each hom-setHomC(A,B) (forA,B ∈ Ob (C)) is equipped with the structure of an abelian group
(HomC(A,B) ,+), and composition of morphisms is bilinear; that is,

f ◦ (g + h) = f ◦ g + f ◦ h if f, g and f, h are composable,
(f + g) ◦ h = f ◦ h+ g ◦ h if f, h and g, h are composable.

(2.1)

More generally, provided with a commutative ring R, a category is called RMod-enriched if every hom-set
is equipped with a left R-module structure, and the composition is bilinear. In this setting, hom-sets are also
referred to as hom-spaces. If all hom-spaces are finitely generated as a left R-module, then the category is
called RFinMod-enriched.

As always, pre-additive categories come with structure-preserving functors.

Definition 2.1.2 (Additive functors). Let C and D be pre-additive categories. A functor F : C → D is
called additive if, for any two A,B ∈ Ob (C), FA→B : HomC(A,B) → HomD

(
F (A), F (B)

)
is a group

morphism.

33



2 Abelian Categories

2.1.2 Additive categories

In pre-additive categories, we can generalise the notion of direct sums on abelian groups, modules, . . .

Definition 2.1.3 (Biproducts or direct sums). Let C be a pre-additive category, and let A1, . . . , An ∈
Ob (C). A biproduct or direct sum of A1, . . . , An is an object A1 ⊕ · · · ⊕ An, together with morphisms
incAk

: Ak → A1 ⊕ · · · ⊕An and projAk
: A1 ⊕ · · · ⊕An → Ak for all k such that the following identities

hold

idAk
= projAk

◦ incAk
for all k, (2.2)

idA1⊕···⊕An
= incA1

◦ projA1
+ · · ·+ incAn

◦ projAn
, (2.3)

0 = projAℓ
◦ incAk

if k ̸= ℓ. (2.4)

Remark 2.1.4. For two objects, the last identity (2.4) is unnecessary. Indeed, (2.2) and (2.3) imply that

projA2
◦ incA1

= projA2
◦(incA1

◦ projA1
+ incA2

◦ projA2
) ◦ incA1

= projA2
◦ incA1

◦idA1
+ idA2

◦ projA2
◦ incA1

= projA2
◦ incA1

+projA2
◦ incA1

. (2.5)

Remark 2.1.5. The term “biproduct” stems from the fact that two objects in a pre-additive category have a
product or coproduct if and only if they have a biproduct (see [Lan78, § VIII.2, Theorem 2]).

Definition 2.1.6 (Additive categories). Let C be a pre-additive category. C is called additive if it has a null
object 0 (i.e. an object that is both initial and final), and all binary biproducts exist.

Provided with a commutative ring R, a category C is called R-linear if it is RMod-enriched and additive.

Lemma 2.1.7. Let C be a pre-additive category with a null object Z . For any A,B ∈ Ob (C), let zBA : A → B
be the unique morphism factoring through Z , and let 0BA : A → B be the zero for the addition on HomC(A,B).
Then always zBA = 0BA .

Proof. Let f : B → C be any morphism, then f ◦ 0BA = 0CA as f ◦ 0BA + f ◦ 0BA = f ◦ 0BA . As a consequence,
we find zBA = zBB ◦ 0BA = 0BA . ■

From now on, we will always denote both the zero element for the addition and the morphism factoring
through the null object by 0.

Remark 2.1.8. One would expect that there is a notion of pre-additive functors for pre-additive categories and
a separate notion of additive functors (which would be pre-additive and, in addition, preserve the biproducts)
for additive categories. However, it turns out that these two notions are equivalent. Indeed, it is straight-
forward to verify that any functor which is linear on morphisms preserves biproducts; that is, it preserves
identities (2.2), (2.3), and (2.4).

Definition 2.1.9 (Simple, semisimple, and indecomposable objects). Let C be an additive category. An
object A ∈ Ob (C) is called

1. simple if 0 and A are its only subobjects, i.e. if for any monomorphism i : B → A we have either
B ∼= 0 or B ∼= A,

2. semisimple if it is a finite biproduct of simple objects,

3. indecomposable if it does not admit a decomposition into a biproduct of its subobjects, or equivalently
if it is not isomorphic to a biproduct of two non-zero objects.

The category C is called semisimple if every object is semisimple.
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2.2 Karoubian, pre-abelian, and abelian categories

To pass from additive categories to abelian categories we will introduce the categorical generalisation of
kernels.

2.2.1 Kernels and cokernels

Definition 2.2.1 (Kernel and cokernel of a morphism). Let C be a category with a null object. A kernel
of a morphism f : A → B is an equaliser of the morphisms f, 0 : A → B.

This means that a kernel of a morphism f : A → B is a pair (Ker(f), ker(f)), consisting of an object
Ker(f) ∈ Ob (C) and a morphism ker(f) : Ker(f) → A, such that f ◦ ker(f) = 0, and such that every
morphism h : X → A satisfying f ◦ h = 0 factors uniquely through ker(f); that is, there exists a unique
morphism h′ : X → Ker(f) such that h = ker(f) ◦ h′

Ker(f)

A B

X

ker(f)

0

f
∃!h′

h

0

. (2.6)

A cokernel is the dual of the above construction; a coequaliser of the morphisms f, 0 : A → B. This
means that a cokernel of a morphism f : A → B is a pair (Coker(f), coker(f)), consisting of an object
Coker(f) ∈ Ob (C) and a morphism coker(f) : B → Coker(f), such that coker(f) ◦ f = 0, and such that
every morphism h : B → X satisfying h ◦ f = 0 factors uniquely through coker(f); that is, there exists a
unique morphism h′ : Coker(f) → X such that h = h′ ◦ coker(f)

Coker(f)

A B

X

∃!h′f

0

0

coker(f)

h

. (2.7)

Through the standard proofs for limits and colimits, it is easy to prove that kernels and cokernels are unique
up to unique isomorphism.

Definition 2.2.2 (Image and coimage of a morphism). Let C be a category with a null object, and let f
be a morphism.

1. If f admits a cokernel (Coker(f), coker(f)), such that this cokernel admits a kernel, then this kernel
of the cokernel is called an image of f

(Im(f), im(f)) = (Ker(coker(f)), ker(coker(f))). (2.8)

2. If f admits a kernel (Ker(f), ker(f)), such that this kernel admits a cokernel, then this cokernel of the
kernel is called a coimage of f

(Coim(f), coim(f)) = (Coker(ker(f)), coker(ker(f))). (2.9)

Lemma 2.2.3. Let C be a category with a null object 0. If a morphism f : A → B in C admits a kernel
(Ker(f), ker(f)) (resp. a cokernel (Coker(f), coker(f))), then ker(f) is a monomorphism (resp. coker(f) is
an epimorphism).
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Proof. Suppose that k := ker(f) ◦ g1 = ker(f) ◦ g2 for two morphisms g1, g2. We then have f ◦ k = 0,
which implies that there exists a unique morphism g such that ker(f) ◦ g = k. Clearly, g = g1 = g2. ■

Proposition 2.2.4. Let C be a pre-additive category with a null object 0. A morphism f : A → B with a kernel
(Ker(f), ker(f)) (resp. a cokernel (Coker(f), coker(f))) is a monomorphism (resp. epimorphism) if and only
if Ker(f) ∼= 0 and ker(f) = 0 (resp. Coker(f) ∼= 0 and coker(f) = 0).

Proof. Suppose that f is a monomorphism. Then f ◦ ker(f) = f ◦ 0 implies that ker(f) = 0, hence also that
Ker(f) ∼= 0 as kernels are monomorphisms and the null morphism 0 can only be a monomorphism if the
domain is a null object. Suppose now that f is such that Ker(f) ∼= 0 and ker(f) = 0. If f ◦ g1 = f ◦ g2 = 0,
then f ◦ (g1 − g2) = 0, which implies that there is a unique morphism g such that g1 − g2 = ker(f) ◦ g = 0,
hence g1 = g2. ■

2.2.2 Karoubian categories

The above definition of kernels allows us to show that biproducts and idempotent endomorphisms are es-
sentially the same thing.

Proposition 2.2.5. Let C be a pre-additive category with a null object 0, and let A ∈ Ob (C). The following
are equivalent

1. there exists a non-trivial (i.e. not 0 or idA) idempotent endomorphism f : A → A such that f and idA−f
admit a kernel,

2. there exists a non-trivial idempotent morphism f : A → A such that f and idA − f admit a cokernel,

3. there exists a non-trivial object (i.e. not isomorphic to A or 0) X ∈ Ob (C) together with a split monomor-
phism f : X → A that admits a cokernel,

4. there exists a non-trivial object X ∈ Ob (C) together with a split epimorphism f : A → X that admits a
kernel,

5. A is decomposable (i.e. not indecomposable).

Proof. Assume that (1) holds. Set X := Ker(f), Y := Ker(idA−f) and incX := ker(f), incY := ker(idA−
f). As f ◦ (idA − f) = 0, there is a uniquely induced morphism projX : A → X such that incX ◦ projX =
idA − f . Similarly, there is a unique morphism projY : A → Y such that incY ◦ projY = f . We then find
incX ◦ projX ◦ incX = incX , which implies that projX ◦ incX = idX because incX is a monomorphism by
Lemma 2.2.3. Similarly, we show that projY ◦ incY = idY . Because f, idA − f ̸= 0, we know that X and Y
are not null objects. Indeed, this would imply that f or idA − f is a monomorphism, and thus that f = idA
or idA − f = idA (and thus idA − f = 0 or f = 0) through f ◦ f = f and (idA − f) ◦ (idA − f) = idA − f .
This proves that A = X ⊕ Y is decomposable, and we conclude that (1) implies (5).

Similarly, we prove that (2) implies (5).

Suppose now that (5) holds, and let A = X ⊕ Y be a biproduct decomposition into non-zero objects,
with biproduct morphisms incX : X → A, projX : A → X . Set f := incX ◦ projX . f is idempotent
through projX ◦ incX = idX , and as X and Y are not null objects, we find f ̸= 0, idA. It is not hard
to see that f and idA − f admit kernels and cokernels and that incX and projX admit a cokernel and a
kernel respectively: the kernels of f and projX coincide, and they equal incY as f ◦ k = 0 implies that
k = (incX ◦ projX + incY ◦ projY )◦k = incY ◦(projY ◦k) (and this induced morphism projY ◦k is unique
as incY is a monomorphism). We conclude that (5) implies (1), (2), (3), and (4).

Finally, we show that (3) implies (2) and that (4) implies (1): for any split monomorphism (resp. epimorphism)
f : X → A (resp. f : A → X) with splitting f : A → X (resp. f : X → A), we find that the composition
f ◦ f (resp. f ◦ f ) is an idempotent endomorphism with the same cokernel (resp. cokernel) as f . ■

Corollary 2.2.6. Let C be a pre-additive category with a null object. The following are equivalent

1. every idempotent endomorphism in C admits a kernel,
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2. every idempotent endomorphism in C admits a cokernel,

3. for every idempotent endomorphism f : A → A in C, there exists a biproduct decomposition A = X ⊕Y
such that f = incX ◦ projX .

Proof. This follows from the statement and proof of the above Proposition 2.2.5. ■

The above characterisation of biproducts through idempotent endomorphisms motivates the following type
of pre-additive categories.

Definition 2.2.7 (Karoubian categories). A pre-additive category C with a null object is called Karoubian
if it satisfies one of the equivalent properties in Corollary 2.2.6.

Remark 2.2.8. We call an idempotent endomorphism f : A → A split if there exists an object B and mor-
phisms r : A → B, s : B → A such that s◦r = f and r◦s = idB . Note that s is then a split monomorphism
and r a split epimorphism. The above statements show that idempotents that admit kernels (or cokernels)
split. Furthermore, the splitting morphisms r and s then admit a kernel and cokernel respectively.

In particular, every idempotent morphism in a Karoubian category splits, and every split monomorphism
and epimorphism admit a cokernel and kernel respectively.

2.2.3 Abelian categories

Definition 2.2.9 (Pre-abelian categories). Let C be an additive category. C is called pre-abelian if every
morphism admits a kernel and a cokernel.

Corollary 2.2.10. Let C be a pre-abelian category, and let A ∈ Ob (C) be simple. Any morphism from (resp.
to) A is either zero or a monomorphism (resp. an epimorphism).

Proof. Let f : A → X be a morphism. Since ker(f) : Ker(f) → A is a monomorphism, we are in one of
two cases: either ker(f) = 0, in which case Ker(f) = 0 and f is a monomorphism by Proposition 2.2.4, or
ker(f) is an isomorphism, in which case f = 0. ■

We are finally ready to introduce the most important categories in homological algebra: abelian categories.

Definition 2.2.11 (Abelian categories). Let C be a pre-abelian category, and let f : A → B be a morphism
in C. For every kernel and cokernel of f , there exists a unique morphism f making the following diagram
commute

Ker(f) A B Coker(f)

Coim(f) Im(f)

ker(f) f

coim(f)

coker(f)

∃!f

im(f) . (2.10)

C is called abelian if this induced morphism f is always an isomorphism.

Remark 2.2.12. Alternatively, a pre-abelian category C is called abelian if every monomorphism is a kernel,
and every epimorphism is a cokernel.

Remark 2.2.13. Because Coim(f) plays the role of A/Ker(f), we see that a pre-abelian category is abelian
precisely when it satisfies the first isomorphism theorem.

Proposition 2.2.14. Let C be an abelian category. A morphism in C is an isomorphism if and only if it is both
a monomorphism and an epimorphism.

Proof. Isomorphisms are always split monomorphisms and epimorphisms, so we only have to prove the other
direction. If f is both a monomorphism and an epimorphism, then Proposition 2.2.4 implies that ker(f) = 0
and coker(f). As a consequence, we find coim(f) = idA and im(f) = idB . The definition of abelian
categories now implies that f = f is an isomorphism. ■

37
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Example 18 (Module categories). The standard examples of abelian categories (and in some sense the only
ones) are categories of left or right modules over some ring. Let R be a ring, the category of left R-modules
RMod is clearly enriched over itself (hence Ab-enriched), has a zero object (the zero module), admits all
kernels and cokernels, admits all finite biproducts, and is such that the first isomorphism theorem holds. The
category of finitely generated left (resp. right) R-modules is denoted RFinMod (resp. FinModR), and is
abelian too.

Example 19 (Representation categories). Let G be a group and let K be some field. The category of
K-linear representations RepK(G) is additively isomorphic to the category of left modules over its group
algebra KG (i.e. RepK(G) ∼= KGMod), and is thus abelian too. The category of finite-dimensional repre-
sentations FinRepK(G) is abelian too and isomorphic to KGFinMod.

2.3 Short exact sequences and exact functors

2.3.1 Short exact sequences

Next, we introduce one of the most important tools in homological algebras: (short) exact sequences.

Definition 2.3.1 (Exact sequences). Let C be an abelian category. A sequence of morphisms in C

· · · Ai−1 Ai Ai+1 · · ·fi−2 fi−1 fi fi+1 (2.11)

is called a chain complex if fk ◦ fk−1 = 0 for all k, and is called exact at degree i if (Im(fi−1), im(fi−1)) =
(Ker(fi), ker(fi)).

A sequence of morphisms is called

1. exact if it is exact in every degree,

2. left exact if it is exact and of the form

0 A B C
f g

, (2.12)

note that this just means that f is a kernel of g,

3. right exact if it is exact and of the form

A B C 0
f g

, (2.13)

note that this just means that g is a cokernel of f ,

4. short exact if it is exact and of the form

0 A B C 0
f g

. (2.14)

Example 20. Let C be an abelian category and let A,B ∈ Ob (C). We can define two special short exact
sequences coming from the biproduct A⊕B

0 A A⊕B B 0

0 B A⊕B A 0

incA projB

incB projA

. (2.15)
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2.3.2 Exact functors

Exact sequences allow us to elegantly introduce the structure-preserving functors for abelian categories.

Definition 2.3.2 (Exact functors). Let C,D be abelian categories. An additive functor F : C → D is called

1. left exact if it preserves left exact sequences, i.e. maps kernel to kernels,

2. right exact if it preserves right exact sequences, i.e. maps cokernels to cokernels,

3. exact if it preserves short exact sequences.

Remark 2.3.3 (Exact functors are the correct structure-preserving functors for abelian categories). It is easy to
prove that a functor is exact if and only if it is both left and right exact.

Example 21 (Hom-functors). Let C be an abelian category, and let A ∈ Ob (C) be an object. The covariant
and contravariant hom-functors HomC(A,−) and HomC(−, A) are left exact. Indeed, let

0 X Y Z
f g (2.16)

be exact.

Then
0 HomC(A,X) HomC(A, Y ) HomC(A,Z)

f◦− g◦− (2.17)

is exact: f ◦− is a monomorphism as f is a monomorphism, and g ◦h = 0 implies that there exists a unique
h such that h = f ◦ h (as f = ker(g)).

Similarly, one can prove that HomC(−, A) maps right exact sequences to left exact sequences.

2.3.3 Split short exact sequences

Above, we have shown that every biproduct induces a short exact sequence. We can characterise these short
exact sequences through our discussion on Karoubian categories.

Corollary 2.3.4. Let C be an abelian category, and let

0 A B C 0
f g (2.18)

be a short exact sequence in C.

The following are equivalent

1. f is a split monomorphism,

2. g is a split epimorphism,

3. B = A⊕ C with inclusion f : A → B and projection g : B → C .

Proof. This follows from Proposition 2.2.5. ■

Definition 2.3.5 (Split short exact sequences). Let C be an abelian category. A short exact sequence is
called split short exact if one of the equivalent properties of Corollary 2.3.4 holds.
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2.3.4 Projective objects

In module theory, projective modules play a very important role. Similarly, projective objects in abelian
categories are very important.

Definition 2.3.6 (Projective and injective objects). Let C be an abelian category. An object A ∈ Ob (C)
is called projective if

HomC(A,−) is exact (or, equivalently due to Example 21, right exact). (2.19)

Equivalently, A is projective if, for any f : A → X and g : X → Y such that X g→ Y → 0 is exact, there is
an induced morphism f : A → X making the following diagram commute

A

X Y 0

f
∃f

g

. (2.20)

Dually, A is called injective if

HomC(−, A) is exact (or, equivalently, right exact). (2.21)

Equivalently, A is injective if, for any f : X → A and g : X → Y such that 0 → X
g→ Y is exact, there is

an induced morphism f : Y → A making the following diagram commute

A

0 X Y

f

g

∃f . (2.22)

Remark 2.3.7. Projective and injective objects can also be defined for additive categories through (2.20) and
(2.22).

Lemma 2.3.8. Let C be an additive category, and let A ∈ Ob (C) be projective (resp. injective). Any epimor-
phism to A (resp. monomorphism from A) is split.

Proof. Let g : X → A be an epimorphism. We then find idA such that g ◦ idA = idA. ■

The following proposition is quite remarkable, as it shows that the most interesting additive categories con-
tain objects that are not projective.

Proposition 2.3.9. Let C be a Karoubian category. Every object of C is projective if and only if every epimor-
phism is split.

Proof. If every object is projective, then every epimorphism is split through Lemma 2.3.8.

Suppose now that every monomorphism is split. Let A,X, Y ∈ Ob (C) be any objects, let f : A → X be
any morphism, and let g : X → Y be any epimorphism. g splits, which implies that there exists g such that
g ◦ g = idY . We can then set f = g ◦ f , and we have g ◦ f = f . ■

2.4 The Jordan-Hölder theorem and Schur’s lemma

Now that we have introduced the basic definitions of abelian categories, we can state some of the most
important results (at least for our purposes) that hold in this setting.
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2.4.1 The Jordan-Hölder theorem

Definition 2.4.1 (Filtrations and Jordan-Hölder series). Let C be an abelian category. A filtration of an
object A ∈ Ob (C) is a finite sequence of monomorphisms

0 = A0 A1 . . . An−1 An = A
i0 i1 in−2 in−1

. (2.23)

A filtration is called a Jordan-Hölder series if, for every k, the object Ak+1/Ak = Coker(ik) is simple. If such
a filtration exists, then A is called of finite length. The length of this filtration is then called the length of A,
denoted len(A).

Let X ∈ Ob (C) be a simple object, the multiplicity of A in the Jordan-Hölder series of A, denoted [A : X],
is defined as the amount of times X is isomorphic to the object Ak+1/Ak = Coker(ik).

Definition 2.4.2. Let C be any category, and let A ∈ Ob (C).

A is called artinian if it satisfies the descending chain condition on subobjects, i.e. if every descending chain
of subobjects

· · · A2 A1 A0 = A
i3 i2 i1 (2.24)

eventually becomes stationary. This means that there exists some n ≥ 0 such that ik is an isomorphism for
all k ≥ n.

A is called noetherian if it satisfies the ascending chain condition.

C is called artinian or noetherian if every object is artinian or noetherian.

Example 22. Semisimple abelian categories are artinian, noetherian, and such that all objects are of finite
length.

Remark 2.4.3. One can show that an object is of finite length if and only if it is both artinian and noetherian,
we refer to the Stacks Project page on Jordan-Hölder ([aut25e]).

Theorem 2.4.4 (Krull-Schmidt, [EGNO15, Theorem 1.5.7]). Let C be an abelian category, and let A be an
object in C of finite length. A is isomorphic to a biproduct of indecomposable objects, and this decomposition is
unique up to isomorphism. By this last statement, we mean that for two decompositions A ∼= B1 ⊕ · · · ⊕Bm

∼=
C1 ⊕ · · · ⊕ Cn into indecomposables, we have m = n, and there exists a permutation σ such that Bi

∼= Cσ(i)

for all i.

Proof omitted. This is a corollary of [Kra, Theorem 4.2] and Corollary 5.1.10 (which we will prove later). ■⧸

Definition 2.4.5 (Krull-Schmidt categories). Let C be an additive category. C is called Krull-Schmidt if the
above theorem holds for all objects in C; that is, if every object A ∈ Ob (C) has a unique (up to isomorphism)
biproduct decomposition into indecomposable objects.

Theorem 2.4.6 (Jordan-Hölder, [EGNO15, Theorem 1.5.4]). Let C be an abelian category, and let A ∈
Ob (C) be an object of finite length. Any filtration of A can be extended to a Jordan-Hölder series of A, any two
Jordan-Hölder series of A have the same length, and the multiplicities of simple objects in any two Jordan-Hölder
series are the same.

This last statement can be restated in the following way: for any two Jordan-Hölder series 0 = A0, A
′
0 → · · · →

Am, A′
n = A, we have m = n, and there exists a permutation σ such that Ak+1/Ak

∼= A′
σ(k)+1/A

′
σ(k) for all

k.

Proof omitted. We refer to the Stacks Project page on Jordan-Hölder ([aut25e]). ■⧸

We can use this result to prove that semisimple categories can be recognised through short exact sequences
splitting.
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Proposition 2.4.7. An abelian category in which all objects are of finite length is semisimple if and only if
every short exact sequence splits.

Proof. It is easy to see that every short exact sequence in a semisimple abelian category splits.

Suppose now that C is such that every short exact sequence splits. Let X be any object of C, and let Y be
the first non-zero object in a Jordan-Hölder series for X . The short exact sequence induced by the inclusion
of Y into X splits, which shows that X ∼= Y ⊕X ′ for some object X ′. It is then easy to see that X ′ is an
object such that len(X ′) = len(X)− 1, and we see that X is semisimple through induction. ■

Corollary 2.4.8. For an abelian category C in which all objects are of finite length, the following are equivalent

1. C is semisimple,

2. every monomorphism in C is split,

3. every epimorphism in C is split,

4. every object in C is projective.

Proof. The statements (1) and (2) or (3) are equivalent through Proposition 2.4.7, and (3) and (4) are equivalent
through Proposition 2.3.9. ■

2.4.2 Schur’s lemma

Theorem 2.4.9 (Schur’s lemma, [EGNO15, Lemma 1.5.2]). Let C be an abelian category, and let A,B ∈
Ob (C) be simple objects. Any non-zero morphism A → B is an isomorphism.

Proof omitted. It is not hard to prove this by using the properties of simple objects, and the fact that a mor-
phism in an abelian category is an isomorphism if and only if it is both a monomorphism and an epimorphism
(Proposition 2.2.14). ■⧸

Corollary 2.4.10 ([EGNO15, Proposition 1.8.4]). Let C be a FinVectK-enriched abelian category, with K
some algebraically closed field, and let A,B ∈ Ob (C) be simple. We have

dimK(HomC(A,B)) =

{
1 if A ∼= B

0 else
. (2.25)

Proof omitted. One can prove this statement by noting that Schur’s lemma 2.4.9 implies that the hom-spaces
will be finite-dimensional division algebras over K. ■⧸

Definition 2.4.11 (Schur categories). An additive category C is called Schur if it satisfies Schur’s lemma;
that is, if for any two simple objects A,B ∈ Ob (C) the hom-space HomC(A,B) is a division ring (skew
field).
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In this chapter, we introduce one of the most important categorical structures used throughout this text:
monoidal products.

Monoidal categories, that is, categories equipped with a monoidal product, can be approached from two
intuitive points of view:

1. A monoidal category can be viewed as a (vertical) categorification of a monoid. The collection of
objects Ob (C) carries a monoid-like structure, with a binary multiplication ⊗ and a unit object for this
multiplication 1. This “multiplication” is promoted to a functor ⊗ : C × C → C, called the monoidal
product. This is the viewpoint adopted in [EGNO15, § 2.1].

2. In [Lan78, § VII.1], monoidal categories are introduced as categories that “come equipped with a “prod-
uct” like the direct product ×, the direct sum ⊕, or the tensor product ⊗”. This is a viewpoint that will
be particularly useful throughout this text. Starting from Chapter 4, we will focus on monoidal prod-
ucts that are bilinear on morphisms. This implies that the monoidal product does not behave like a
direct product × or a direct sum ⊕ (indeed, it is not hard to check that these notions are not bilinear
in the usual settings), but rather like a tensor product ⊗ of modules, vector spaces, or representations.

In Chapter 6, we will see that monoidal products allow us to define algebras in categories.

3.1 The basics

3.1.1 Monoidal categories

Definition 3.1.1 (Monoidal categories, [Lan78, § VII.1] and [EGNO15, Definition 2.1.1 and Defini-
tion 2.2.8]). A monoidal category (C,⊗,1, α, λ, ρ) consists of

• a category C,

• a bifunctor ⊗ : C × C → C (we write ⋆1 ⊗ ⋆2 = ⊗(⋆1, ⋆2) for objects and morphisms), called the
monoidal product,

• an object 1 ∈ Ob(C), called the monoidal unit,

and three natural isomorphisms:

• α : (− ⊗ −) ⊗ − → − ⊗ (− ⊗ −), called the associator, this is a natural isomorphism between the
functors

F : C × C × C → C : (A,B,C) 7→ (A⊗B)⊗ C and (f, g, h) 7→ (f ⊗ g)⊗ h, and
G : C × C × C → C : (A,B,C) 7→ A⊗ (B ⊗ C) and (f, g, h) 7→ f ⊗ (g ⊗ h),

implying that diagrams of the form

(A1 ⊗B1)⊗ C1 (A2 ⊗B2)⊗ C2

A1 ⊗ (B1 ⊗ C1) A2 ⊗ (B2 ⊗ C2)

(f⊗g)⊗h

α(A1,B1,C1) α(A2,B2,C2)

f⊗(g⊗h)

(3.1)

commute,
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• λ : 1⊗− → idC , called the left unitor, this is a natural isomorphism between the functors

L : C → C : A 7→ 1⊗A and f 7→ id1 ⊗ f, and
idC : C → C : A 7→ A and f 7→ f,

implying that diagrams of the form

1⊗A 1⊗B

A B

id1⊗f

λA λB

f

(3.2)

commute,

• ρ : −⊗ 1 → idC , called the right unitor, this is a natural isomorphism between the functors

R : C → C : A 7→ A⊗ 1 and f 7→ f ⊗ id1, and
idC : C → C : A 7→ A and f 7→ f,

implying that diagrams of the form

A⊗ 1 B ⊗ 1

A B

f⊗id1

ρA ρB

f

(3.3)

commute.

These natural isomorphisms have to be such that the following properties hold:

1. α(A,B,C) : (A⊗B)⊗ C → A⊗ (B ⊗ C) is a natural isomorphism such that

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

α(A,B,C)⊗idD α(A⊗B,C,D)

α(A,B⊗C,D) α(A,B,C⊗D)

idA⊗α(B,C,D)

(3.4)

commutes. This identity is called the pentagon identity.

2. λA : 1⊗A → A and ρA : A⊗ 1 → A are natural isomorphisms such that

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

α(A,1,B)

ρA⊗idB idA⊗λB

(3.5)

commutes. This identity is called the triangle identity.

3. λ1 = ρ1 : 1⊗ 1 → 1, the unitors coincide on the monoidal unit.

We will often use the shorthand notation C for the monoidal category (C,⊗,1, α, λ, ρ).
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Examples

Example 23 (The opposite of a monoidal category). Let (C,⊗,1, α, λ, ρ) be a monoidal category. We
can define a monoidal category (C,⊗op,1, αop, λop, ρop), called the opposite monoidal category1, through

1. A⊗op B := B ⊗A,

2. αop
(A,B,C)

:= α−1
(C,B,A)

: (A⊗op)⊗op C = C ⊗ (B ⊗A) → A⊗op (B ⊗op C) = (C ⊗B)⊗A,

3. λop
A := ρA : 1⊗op A = A⊗ 1 → A, and ρopA := λA : A⊗op 1 = 1⊗A → A.

Example 24 (Vector spaces). Let K be a field. The standard example of a monoidal category is the category
of vector spaces VectK, where the monoidal product is the standard tensor product ⊗K, and the monoidal
unit is K.

Example 25 (Representations). Let G be a group and let K be a field. The category of K-linear G-
representations RepK(G) equipped with the tensor product induced by the one on VectK (i.e. (V, ρ) ⊗
(W,σ) = (V ⊗K W,ρ⊗ σ)) defines a monoidal category with unit (K, g 7→ idK).

Example 26 (Modules). Let R be a commutative ring. The category of R-modules RMod, equipped with
the usual tensor product ⊗R and monoidal unit 1 = R, forms a monoidal category.

The above examples are all examples of monoidal categories for which the monoidal product is a “tensor
product”, now we will introduce some examples in which the monoidal product does not feel like a tensor
product because of a lack of bilinearity.

Example 27 (Sets). Set, equipped with the Cartesian product of sets and 1 = {⋆}, is a monoidal category.

Example 28 (Additive categories). Any additive category with zero object 0 is a monoidal category when
equipped with the biproduct ⊕ as the monoidal product and 1 = 0 as the unit.

3.1.2 Monoidal functors and natural transformations

As always, it is possible to define structure-preserving functors on monoidal categories.

Definition 3.1.2 (Monoidal functors, [EGNO15, Definition 2.4.1 and Definition 2.4.5]). Let (C,⊗C ,1C , αC , λC , ρC)
and (D,⊗D,1D, αD, λD, ρD) be monoidal categories. A functor F : C → D is called monoidal if there ex-
ists an isomorphism ζ : F (1C) → 1D , and there exists a natural isomorphism ε(A,B) : F (A) ⊗D F (B) →
F (A⊗C B), such that

(F (A)⊗D F (B))⊗D F (C) F (A⊗C B)⊗D F (C) F ((A⊗C B)⊗C C)

F (A)⊗D (F (B)⊗D F (C)) F (A)⊗D F (B ⊗C C) F (A⊗C (B ⊗C C))

ε(A,B)⊗DidF (C)

(αD)(F (A),F (B),F (C))

ε(A⊗CB,C)

F ((αC)(A,B,C))

idF (A)⊗Dε(B,C) ε(A,B⊗CC)

,

(3.6)
and

1D ⊗D F (A) F (A) F (A)⊗D 1D F (A)

F (1C)⊗D F (A) F (1C ⊗C A) F (A)⊗D F (1C) F (A⊗C 1C)

(λD)F (A) (ρD)F (A)

ζ⊗DidF (A)

ε(1C ,A)

F ((λC)A) idF (A)⊗Dζ

ε(A,1C)

F ((ρC)A) . (3.7)

commute for all objects A,B,C ∈ Ob (C). F is called a monoidal equivalence if F is, in addition, an equiva-
lence of categories C → D.

As monoidal functors come with some additional data, we also need a notion of structure-preserving natural
transformations.

1Also called the reverse monoidal category, but we will reserve the term “reverse” for braided monoidal categories.
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Definition 3.1.3 (Monoidal natural transformations, [EGNO15, Definition 2.4.8]). Let (C,⊗C ,1C , αC , λC , ρC)
and (D,⊗D,1D, αD, λD, ρD) be monoidal categories, and let (F, ε, ζ), (F , ε, ζ) : C → D be monoidal func-
tors. A monoidal natural transformation η : (F, ε, ζ) → (F , ε, ζ) is a natural transformation η : F → F such
that the following diagram commutes for all A,B ∈ Ob (C)

F (A)⊗C F (B) F (A⊗B)

F (A)⊗C F (B) F (A⊗B)

ε(A,B)

ηA⊗ηB ηA⊗B

ε(A,B)

. (3.8)

Remark 3.1.4 ([EGNO15, Remark 2.4.10]). One can show that any monoidal equivalence has a monoidal
quasi-inverse.

Remark 3.1.5. The above definition of monoidal categories (respectively, monoidal functors) may initially
appear quite involved, but it is in fact the natural categorification of the concept of monoids (respectively,
morphisms of monoids). Indeed, the Mac Lane Coherence Theorem (see [Lan78, § VII.2] and [EGNO15, Theo-
rem 2.9.2]) shows that the coherence conditions (3.4) and (3.5) guarantee that the theory of monoidal cate-
gories is a categorification of the theory of monoids (that is, general results about monoids lift to correspond-
ing results about monoidal categories).

3.2 Mac Lane’s strictness theorem

We have mentioned that, even though the definition of monoidal categories in Definition 3.1.1 may seem
rather involved, it is conceptually satisfying due to its interpretation as a categorification of the theory of
monoids. However, there is a variant of the notion of monoidal categories that is significantly easier to work
with in theory2.

Definition 3.2.1 (Strict monoidal categories, [Lan78, § VII.1] and [EGNO15, Definition 2.8.1]). A
strict monoidal category is a a monoidal category with a trivial associator and trivial unitors. Explicitly, a
strict monoidal category is a triple (C,⊗,1) of a category C, a bifunctor ⊗ : C × C → C, and an object
1 ∈ Ob (C), such that for all objects A,B,C and all morphisms f, g, h in C

1. the monoidal product makes Ob (C) into a monoid, i.e. the monoidal product is associative on objects
(A⊗B)⊗ C = A⊗ (B ⊗ C), and 1 acts as a unit for this product 1⊗A = A = A⊗ 1,

2. this monoid structure also holds functorially, i.e. (f⊗g)⊗h = f⊗(g⊗h) and id1⊗f = f = f⊗ id1.

Remarkably, every monoidal category is equivalent to a strict monoidal category.

Theorem 3.2.2 (Mac Lane’s strictness theorem, [Lan78, § XI.3] and [EGNO15, Theorem 2.8.5]). Every
monoidal category is monoidally equivalent to a strict monoidal category.

Proof omitted. See [Lan78, Theorem 1, § XI.3]. ■⧸

This theorem shows that, up to equivalence, it is safe to work with strict monoidal categories instead of
general monoidal categories.

2We would like to note that this notion of strict monoidal categories is easier to work with in theory, indeed: when working with
monoidal categories in more practical settings (for example in condensed matter physics or quantum computing), researchers often
prefer to work with skeletal monoidal categories (especially for fusion categories, where through skeletal data fusion categories can
be stored as a finite set of data). Not all monoidal categories are equivalent to categories that are both strict and skeletal (see [Lan78,
§ VII.1])!
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3.3 String diagrams

The strict monoidal categories we defined above allow us to introduce a particularly elegant graphical tool:
string diagrams. Also known as the graphical calculus of monoidal categories, string diagrams generalise
similar visual languages found throughout mathematics and physics. Appearing, for instance, in 2-category
theory3 (see [Lan78, § XII.3]), Penrose notation in physics, quantum computing, topological quantum field
theory, knot theory, and more.

Our discussion of string diagrams is based on this GitHub page by Jutho Haegeman ([Hae]). For a more
thorough introduction to the various graphical languages for monoidal categories, we refer to [Sel10].

As we have emphasised in the above, morphisms are the central focus in category theory. It is therefore
natural that a diagrammatic language used for categorical reasoning should place morphisms at the heart. In
string diagrams the edges correspond to objects (or, equivalently, their identity morphisms), and the vertices
correspond to morphisms.

Suppose that we have some strict monoidal category (C,⊗,1).

A morphism f : A → B in C is drawn as

f

A

B

, (3.9)

and composition with a second morphism g : B → C in C is denoted by concatenation of the diagrams

f

g

A

B

C

= g ◦ f

A

C

. (3.10)

The identity morphism is never drawn, and is thus just an edge.

We will often omit the labels of the objects, as these are usually clear from context.

A diagrammatic language for monoidal categories should, of course, incorporate monoidal products. Parallel
edges represent monoidal products. For example

A⊗B

=

A B

, (3.11)

3A monoidal category can be viewed as a 2-category with a single object.
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3 Monoidal Categories

and for morphisms f : A → B, g : X → Y

f ⊗ g

A⊗X

B ⊗ Y

= f g

A

B

X

Y

=
f

g

A

B

X

Y

=

f

g

A

B

X

Y

, (3.12)

where the last two equalities follow from the functoriality of the monoidal product.

Usually, the monoidal unit 1 is omitted in string diagrams, for example

f

1

A

=

f

A

and g

B

1

=

g

B

. (3.13)

3.4 Duals

3.4.1 Left and right duals

We are now ready to start introducing more interesting properties (or additional data) that a monoidal cat-
egory can have, starting with duals which generalise the notion of duals for finitely generated projective
modules, finite-dimensional vector spaces, . . .

Definition 3.4.1 (Left and right duals, [EGNO15, Definition 2.10.1 and Definition 2.10.2]). Let (C,⊗,1, α, λ, ρ)
be a monoidal category, and let A be an object.

1. A left dual ofA is a triple (A∗, evA, coevA) of an objectA∗ ∈ Ob (C) and morphisms evA : A∗⊗A → 1

(called the evaluation) and coevA : 1 → A ⊗ A∗ (called the coevaluation), such that the following
compositions are the identity morphisms:

A 1⊗A (A⊗A∗)⊗A A⊗ (A∗ ⊗A) A⊗ 1 A,

A∗ A∗ ⊗ 1 A∗ ⊗ (A⊗A∗) (A∗ ⊗A)⊗A∗ 1⊗A∗ A∗.

λ−1
A coevA⊗idA

α(A,A∗,A) idA⊗evA ρA

ρ−1
A∗ idA∗⊗coevA

α−1
(A∗,A,A∗) evA⊗idA∗ λA∗

Equivalently, the following diagrams commute

1⊗A A A⊗ 1

(A⊗A∗)⊗A A⊗ (A∗ ⊗A)

λA

coevA⊗idA

ρA

α(A,A∗,A)

idA⊗evA

, (3.14)

A∗ ⊗ 1 A∗ 1⊗A∗

A∗ ⊗ (A⊗A∗) (A∗ ⊗A)⊗A∗

ρA∗

idA∗⊗coevA

λA∗

α−1
(A∗,A,A∗)

evA⊗idA∗
. (3.15)
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In string diagram notation, duals are represented by rotating the diagrams upside down, for example

A∗

=

A

. (3.16)

Evaluation and coevaluation morphisms will be drawn as arcs, without writing out the morphisms
explicitly, i.e.

evA =
A

A

and coevA =

A

A

. (3.17)

With the aid of this graphical calculus, we can then rewrite the above identities (often called the zigzag
or snake identities) in the following way

A

A

=

A

A

and

A

A

=

A

A

. (3.18)

2. A right dual of A is a triple (∗A, evA, coevA) of an object ∗A ∈ Ob (C) and morphisms evA : A⊗∗A →
1 and coevA : 1 → ∗A⊗A, such that the following compositions are the identity morphisms:

A A⊗ 1 A⊗ (∗A⊗A) (A⊗ ∗A)⊗A 1⊗A A,

∗A 1⊗ ∗A (∗A⊗A)⊗ ∗A ∗A⊗ (A⊗ ∗A) ∗A⊗ 1 ∗A.

ρ−1
A idA⊗coevA

α−1
(A,∗A,A) evA⊗idA λA

λ−1
∗A coevA⊗id∗A α(∗A,A,∗A) id∗A⊗evA ρ∗A

Equivalently, the following diagrams commute

A⊗ 1 A 1⊗A

A⊗ (∗A⊗A) (A⊗ ∗A)⊗A

ρA

idA⊗coevA

λA

α−1
(A,∗A,A)

evA⊗idA

, (3.19)

1⊗ ∗A ∗A ∗A⊗ 1

(∗A⊗A)⊗ ∗A ∗A⊗ (A⊗ ∗A)

λ∗A

coevA⊗id∗A

ρ∗A

α(∗A,A,∗A)

id∗A⊗evA

. (3.20)

Graphically, not a lot changes for right duals. The only difference is that the arrows on the arcs point
in the opposite direction

evA =
A

A

and coevA =

A

A

. (3.21)

Graphically one can thus deduce whether we are working with left or right duals by looking at the
direction of the arrows.
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The zigzag identities for right duals then become

A

A

=

A

A

and

A

A

=

A

A

. (3.22)

Let A,B be objects of C, and let f : A → B be a morphism.

1. Suppose that (A∗, evA, coevA) is a left dual of A, and that (B∗, evB , coevB) is a left dual of B. We
can then define the left dual f∗ : B∗ → A∗ as the unique morphism making the following diagram
commute:

B∗ A∗

B∗ ⊗ 1 1⊗A∗

B∗ ⊗ (A⊗A∗) (B∗ ⊗A)⊗A∗ (B∗ ⊗B)⊗A∗

f∗

ρ−1
B∗

idB∗⊗coevA

λA∗

α−1
(B∗,A,A∗) (idB∗⊗f)⊗idA∗

evB⊗idA∗

. (3.23)

Graphically this is once again denoted by rotating the string diagrams upside down, i.e.

f∗

B∗

A∗

= f

B

A

= f

B

A

. (3.24)

2. Suppose that (∗A, evA, coevA) is a right dual of A, and that (∗B, evB , coevB) is a right dual of B. We
can then define the right dual ∗f : ∗B → ∗A as the unique morphism making the following diagram
commute:

∗B ∗A

1⊗ ∗B ∗A⊗ 1

(∗A⊗A)⊗ ∗B ∗A⊗ (A⊗ ∗B) ∗A⊗ (B ⊗ ∗B)

∗f

λ−1
∗B

coevA⊗id∗B

ρ∗A

α(∗A,A,∗B) id∗A⊗(f⊗id∗B)

id∗A⊗ev∗B

. (3.25)

Graphically we can write this as

∗f

∗B

∗A

= f

B

A

= f

B

A

. (3.26)
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Example 29. Let C be a monoidal category with monoidal unit 1. 1 is its own (left and right) dual. Set
ev1 := λ1 and coev1 := ρ−1

1 , then the zigzag diagrams (3.14) and (3.15) commute due to the triangle
identity (3.5).

Example 30 (Duals of modules). Let us consider the monoidal category of modules over some commuta-
tive ring R, RMod. Suppose that the R-module M has some left dual (M∗, evM , coevM ). We then know
that (idM ⊗ evM ) ◦ (coevM ⊗ idM ) = idM .

We will first show that M has to be finitely generated, the proof for this statement is based on this answer
on StackExchange ([Sta19]). Note that the coevaluation morphism coevM : R → M ⊗R M∗ ends up
in a submodule of M ⊗R M∗ that is generated by a single element

∑k
i=1 mi ⊗ ni for some k ∈ N and

mi ∈ M,ni ∈ M∗. Let M,M∗ be the submodules of M,M∗ generated by {m1, . . . ,mk}, {n1, . . . , nk}.
For the zigzag identity (3.14), we then find

M R⊗R M M ⊗R M∗ ⊗R M M ⊗R R M
coevM⊗idM idM⊗evM

, (3.27)

so we see that we end up in a finitely generated submodule of M . However, this should be the identity
morphism, so M = M is finitely generated. Similarly, we show that M∗ = M∗ is finitely generated.

Second, we will show that a finitely generated R-module that has a (left) dual M should also be projective.
Suppose once again that coevM (1R) =

∑k
i=1 mi⊗ni, where we can now assume that {m1, . . . ,mk}, {n1, . . . , nk}

are generating sets for M,M∗. Let {e1, . . . , ek} be the standard generating set for Rk , we define

π : Rk → M :
k∑

i=1

riei 7→
k∑

i=1

rimi, (3.28)

σ : M → Rk : m 7→
k∑

i=1

evM (ni ⊗m)ei. (3.29)

We claim that π ◦ σ = idM , indeed:

(π ◦ σ)(m) =

k∑
i=1

evM (ni ⊗m)mi

=

k∑
i=1

mi ⊗ evM (ni ⊗m)

= (idM ⊗ evM )

 k∑
i=1

mi ⊗ ni ⊗m


= ((idM ⊗ evM ) ◦ (coevM ⊗ idM ))(1R ⊗m)

= m

(3.30)

due to the zigzag identity (3.14). We thus have a split epimorphism Rk → M , which implies that M is a
direct summand of Rk through Proposition 2.3.4. This shows that M is projective.

So, we know that modules that have duals must be finitely generated and projective. We will now show that
every such module does indeed have a dual. For any R-module M , we define

M∗ := Hom
RMod(M,R) = {R-linear maps M → R}. (3.31)

There is an obvious candidate for an evaluation morphism (on any R-module, not just projective finitely
generated ones) with this candidate dual module; evM is the morphism induced by the universal property
of the tensor product on

M∗ ×M M∗ ⊗R M

R

⊗

eval
evM

, where eval(f,m) = f(m). (3.32)
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We know that M will have to be projective and finitely generated for M∗ to be an actual dual, so we will
now assume that M is projective and finitely generated.

As M is projective and finitely generated, we know that M is a direct summand of a finitely generated free
R-module4, i.e. there exists an R-module N and k ∈ N such that M ⊕ N ∼= Rk . Let {e1, . . . , ek} be the
standard generating set for Rn.

For i = 1, . . . , n, we have ei = mi + ni for some mi ∈ M and ni ∈ N . It is then easy to see that
{m1, . . . ,mk} is a generating set for M . We can then define a generating set for M∗ too by letting δi be the
restriction of the map Rk → R : ei 7→ 1R and ej 7→ 0R if j ̸= i. For m ∈ M , we have m =

∑k
i=1 δi(m)ei,

and thus also m =
∑k

i=1 δi(m)mi (because M ∩N = 0 in Rk).

We can then define the coevaluation morphism as

coevM : R → M ⊗R M∗ : r 7→ r

k∑
i=1

mi ⊗ δi. (3.33)

Proving the zigzag identities is now easy, for example:

((idM ⊗ evM ) ◦ (coevM ⊗ idM ))(m) = (idM ⊗ evM )

 k∑
i=1

mi ⊗ δi ⊗m

 =

k∑
i=1

δi(m)mi = m. (3.34)

It is clear that this dual (3.31) is both a left dual and a right dual by swapping around the tensor products.
We will see later that this is because the category is equipped with a symmetric braiding (the swap map
x⊗ y 7→ y ⊗ x).

Remark 3.4.2. Note that if M is a projective finitely generated module over a commutative ring R, then its
dual M∗ is also projective and finitely generated.

The projectivity of M∗ follows from the general identity (A⊕B)∗ ∼= A∗ ⊕B∗, which holds in any abelian
monoidal category where the monoidal product is bilinear on morphisms.

This identity implies in particular that (Rk)∗ ∼= Rk , since R∗ ∼= R in the category of R-modules. Therefore,
because projective finitely generated modules are direct summands of finite free modules, their duals are
likewise direct summands of finite free modules, and hence projective and finitely generated.

Example 31 (Finite-dimensional vector spaces). Applying the above examples to fields, we see that the
monoidal category of finite-dimensional vector spaces over any field is equipped with duals.

Example 32 (Finite-dimensional representations). Let G be a group and let K be a field. The category of
finite-dimensionalK-linearG-representationsFinRepK(G) has duals by setting ρ∗ : G → HomVectK(V

∗, V ∗) :
g 7→ ρ(g−1)∗ with evaluation morphism ev(V,ρ) := evV and coevaluation morphism coev(V,ρ) := coevV . It
is easy to check the zigzag identities through ρ(g−1)∗(φ)(ρ(g)(v)) = (φ ◦ ρ(g−1) ◦ ρ(g))(v) = φ(v).

We will generalise this in § 6.4.2.

4The proof once again relies on Proposition 2.3.4. As M is finitely generated, there exists some epimorphism Rk → M , and as M is
projective this epimorphism splits. By Proposition 2.3.4, we then see that Rk ∼= M ⊕N for some N .
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3.4.2 Properties of duals

As with any interesting categorical definition, duals are unique up to unique isomorphism.

Theorem 3.4.3 ([EGNO15, Proposition 2.10.5]). Let C be a monoidal category. If an object A ∈ Ob (C) has
a left (resp. right) dual, then it is unique up to unique isomorphism mapping the evaluation and coevaluation
maps to evaluation and coevalutation maps.

Proof. Let (A∗, evA, coevA) and (A∗, evA, coevA) be two left duals of A.

We will start by proving that, if an isomorphism µ : A∗ → A∗ exists and preserves the evaluation and coeval-
uation maps, this isomorphism is unique. The proof will give us a hint of how to define µ. The requirement
that µ preserves the evaluation and coevaluation maps means that the following diagrams commute.

A∗ ⊗A 1 1 A⊗A∗

A∗ ⊗A 1 1 A⊗A∗

µ⊗idA

evA

id1 id1

coevA

idA⊗µ

evA coevA

(3.35)

We then find, using (3.35), functoriality of the associator (3.1), functoriality of ⊗, and functoriality of the left
and right unitors (3.2) and (3.3), that

(evA ⊗ idA∗) ◦ α−1

(A∗,A,A∗)
◦ (idA∗ ⊗ coevA) = (evA ⊗ idA∗) ◦ α−1

(A∗,A,A∗)
◦ (idA∗ ⊗ ((idA ⊗ µ) ◦ coevA))

= (evA ⊗ idA∗) ◦ (idA∗⊗A ⊗ µ) ◦ α−1
(A∗,A,A∗) ◦ (idA∗ ⊗ coevA)

= (id1 ⊗ µ) ◦ ((evA ⊗ idA∗) ◦ α−1
(A∗,A,A∗) ◦ (idA∗ ⊗ coevA))

= (id1 ⊗ µ) ◦ λ−1
A∗ ◦ ρA∗

= λ−1

A∗ ◦ µ ◦ ρA∗

.

(3.36)
This means that µ is indeed uniquely defined, if it exists.

This suggests the following definition for µ : A∗ → A∗

A∗ A∗ ⊗ 1 A∗ ⊗ (A⊗A∗) (A∗ ⊗A)⊗A∗ 1⊗A∗ A∗ρ−1
A∗ idA∗⊗coevA

α−1

(A∗,A,A∗) evA⊗id
A∗ λ

A∗
.

(3.37)
Similarly, one defines a morphism ν : A∗ → A∗ through

A∗ A∗ ⊗ 1 A∗ ⊗ (A⊗A∗) (A∗ ⊗A)⊗A∗ 1⊗A∗ A∗
ρ−1

A∗ id
A∗⊗coevA

α−1

(A∗,A,A∗) evA⊗idA∗ λA∗
.

(3.38)

Using (3.14) and the coherence conditions, it is not hard (but tedious) to find that µ satisfies (3.35).

We will now prove that µ and ν are inverses.

Let us consider the following diagram

A∗ A∗ ⊗A⊗A∗

A∗ ⊗A⊗A∗ A∗ ⊗A⊗A∗ ⊗A⊗A∗ A∗ ⊗A⊗A∗

A∗ A∗ ⊗A⊗A∗ A∗

id⊗coev

id⊗coev id⊗coev⊗id id

id⊗coev

ev⊗id

id⊗ev⊗id

ev⊗id ev⊗id

id⊗coev ev⊗id

, (3.39)
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where the associator, unitors and other specific morphisms are suppressed. We can then see that the three
small rectangles commute. For example, it is clear that functoriality of ⊗ implies that the top left rectangle
commutes

(A∗ ⊗ 1)⊗ 1 (A∗ ⊗ 1)⊗ (A⊗A∗)

(A∗ ⊗ (A⊗A∗))⊗ 1 (A∗ ⊗ (A⊗A∗))⊗ (A⊗A∗)

(idA∗⊗id1)⊗coevA

(idA∗⊗coevA)⊗id1 (idA∗⊗coevA)⊗idA⊗A∗

(idA∗⊗id
A⊗A∗ )⊗coevA

. (3.40)

Similarly, one shows that the other two rectangles commute.

The small triangle in the top right corner commutes due to the above definition for left duals and the evalua-
tion, coevaluation morphisms: we have id⊗ev◦coev⊗ id = id, and therefore id⊗ev⊗ id◦ id⊗coev⊗ id =
id⊗ id⊗ id = id.

We can then see that the path following the left and lower boundary is the same as the one following the top
and right boundary. That first path is equal to ν ◦ µ, and that second path is the identity. We thus find that
ν ◦ µ = id.

With a similar diagram, one finds µ ◦ ν = id. We conclude that A∗ ∼= A∗. ■

Theorem 3.4.4 ([EGNO15, Remark 2.10.3]). Let C be a monoidal category, and let A ∈ Ob (C). If A has a
left (resp. right) dual (A∗, evleftA , coevleftA ) (resp. (∗A, evrightA , coevrightA )), then this dual has a right (resp. left)
dual (A, evleftA , coevleftA ) (resp. (A, evrightA , coevrightA )), i.e.

∗(A∗) ∼= A and (∗A)∗ ∼= A. (3.41)

Proof. Commutativity of (3.19) follows from commutativity of (3.15). Alternatively, it is immediately clear
from the graphical calculus. ■

Interestingly, duals provide us with adjoint pairs which show that the monoidal product preserves limits or
colimits.

Proposition 3.4.5. Let C be a monoidal category. For any object A ∈ Ob (C), define the functors

A⊗− : C → C : X 7→ A⊗X and f 7→ idA ⊗ f, (3.42)
−⊗A : C → C : X 7→ X ⊗A and f 7→ f ⊗ idA. (3.43)

If A has a left (resp. right) dual, then we have the adjoint pairs (A∗ ⊗−, A⊗−) and (−⊗A,−⊗ A∗) (resp.
(A⊗−, ∗A⊗−) and (−⊗ ∗A,−⊗A)).

Proof. For the adjunction (A∗ ⊗−, A⊗−), we set ηX := (coevA ⊗ idX) ◦ λ−1
X and εX : λX ◦ (evA ⊗ idX).

The adjunction equations on these natural transformations then boil down to the zigzag equations. ■

Duals also interact well with the monoidal product.

Lemma 3.4.6. Let C be a monoidal category, and let A,B ∈ Ob (C). Suppose that A,B have left (resp. right)
duals (A∗, evA, coevA), (B

∗, evB , coevB) (resp. (∗A, evA, coevA), (
∗B, evB , coevB)). A⊗B then has a left

(resp. right) dual (B∗⊗A∗, evA◦(λA⊗idA∗)◦(idA⊗evB⊗idA∗), (idA⊗coevB⊗idA∗)◦(λ−1
A ⊗idA∗)◦coevA)

(resp. (∗B ⊗ ∗A, evA ◦ (λ∗A ⊗ idA) ◦ (id∗A ⊗ evB ⊗ idA), (id∗A ⊗ coevB ⊗ idA) ◦ (λ−1
∗A ⊗ idA) ◦ coevA)).

Proof. We can prove this through graphical calculus. The evaluation and coevaluation morphisms we have
defined are

evA⊗B =
B

B

A

A

and coevA⊗B =

A

A

B

B

. (3.44)
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To prove the zigzag equations we then use the zigzag equations for A and B, for example

A B

A B

=

A B

A B

=

A

A

B

B

. (3.45)

■

3.4.3 Rigid categories and dualisation functors

Categories in which all objects admit duals (e.g. categories of finitely generated projective modules over
commutative rings) are quite special.

Definition 3.4.7 (Rigid monoidal categories, [EGNO15, Definition 2.10.11]). A monoidal category is
called rigid (resp. left, right rigid) if every object has both a left and a right (resp. a left, right) dual.

On such categories, dualisation defines a functor.

Proposition 3.4.8 (Dualisation functor). Let C be a left (resp. right) rigid monoidal category. Any choice of
left duals for any object defines a left (resp. right) dualisation functor (this is a contravariant functor)

−∗ : Cdual → Cop : A 7→ A∗ and f 7→ f∗ (resp. ∗− : Cdual → C : A 7→ ∗A and f 7→ ∗f). (3.46)

Moreover, this functor is monoidal.

Proof. Note that idA∗ = idA
∗ is immediate from the definition of duals of morphisms (3.24) and the zigzag

identity (3.18). All that is left for us to prove, is that (g ◦ f)∗ = f∗ ◦ g∗. By definition, we have

(g ◦ f)∗ =

f

g

. (3.47)

Applying the zigzag identity (3.18), we then find

f

g

=

f

g

=

f

g

=

g∗

f∗

. (3.48)
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We conclude that

(g ◦ f)∗ = f∗ ◦ g∗ . (3.49)

Finally, Lemma 3.4.6 implies that this functor is monoidal. ■

Corollary 3.4.9. Let C be a rigid monoidal category. Any pair of a left and a right dualisation functor forms
a pair of monoidal quasi-inverses (which means that there exist monoidal natural isomorphisms between their
compositions and the identity functor).

Proof. Let F be any left dualisation functor, and let G be any right dualisation functor. Theorem 3.4.3 and
Theorem 3.4.4 show that we find unique isomorphisms

ηA : A → (G ◦ F )(A) and εA : (F ◦G)(A) → A for any A ∈ Ob (C) . (3.50)

Naturality follows from the definition of the unique isomorphism in Theorem 3.4.3, and the fact that this
natural isomorphism is monoidal follows from Lemma 3.4.6. ■

Remark 3.4.10. Due to the above corollary, we obtain adjoint pairs (−∗, ∗−) (where −∗ is interpreted as a
functor Cdual → C, and ∗− is interpreted as a functor C → Cdual) and (∗−,−∗) (where ∗− is interpreted as a
functor C → Cdual, and −∗ is interpreted as a functor Cdual → C). As a consequence, −∗ and ∗− map limits
(resp. colimits) in C to colimits (resp. limits) in C.

In particular, they are exact when C is abelian and the monoidal product is bilinear on morphisms. This not
necessarily true when the category is only left or right rigid! On left rigid multiring categories, for example,
this is a non-trivial statement we will prove later (in Proposition 4.3.1).

Similarly, we obtain the adjoint pairs ((−∗)∗, ∗(∗−)) and (∗(∗−), (−∗)∗). This implies that these functors
preserve limits and colimits.

3.5 Traces, pivotal, and spherical structures

3.5.1 Categorical traces

Duals in monoidal categories allow us to introduce a notion of traces in categories. Such a trace is sometimes
called a categorical or quantum trace.

Definition 3.5.1 (Traces in monoidal categories, [EGNO15, Definition 4.7.1]). Let C be a monoidal
category, and let A ∈ Ob (C).

1. Suppose that A has a left dual A∗, suppose that A∗ has a left dual A∗∗, and let a ∈ HomC(A,A∗∗).
The left trace of a is defined as the composition

trleftA (a) = trleft(a) : 1 A⊗A∗ A∗∗ ⊗A∗ 1
coevleft

A a⊗idA∗ evleft
A∗

. (3.51)
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Using the graphical calculus, this is

trleftA (a) = trleft(a) = a , (3.52)

which can easily be remembered by the fact that the morphism should be placed on the left side for
the left trace.

2. Suppose that A has a right dual ∗A, suppose that ∗A has a right dual ∗∗A, and let a ∈ HomC(A, ∗∗A).
The right trace of a is defined as the composition

trrightA (a) = trright(a) : 1 ∗A⊗A ∗A⊗ ∗∗A 1
coevright

A id∗A⊗a evright
∗A . (3.53)

Using the graphical calculus, this is

trrightA (a) = trright(a) = a , (3.54)

which can easily be remembered by the fact that the morphism should be placed on the right side for
the right trace.

Remark 3.5.2. Note that traces are morphisms 1 → 1. We can thus only interpret traces as scalars in some
ring or field when HomC(1,1) is a ring or a field. We will show, in § 4.1, that this happens if and only if the
category is enriched over some commutative ring R such that HomC(1,1) ∼= R.

Example 33 (Traces on projective finitely generated modules). Let R be a commutative ring, and let
M be a projective finitely generated R-module with generating set {m1, . . . ,mk}. From Example 30, we
know that M has a dual M∗ = Hom

RMod(M,R) (which is once again projective and finitely generated,
and is thus dualisable). In this case, however, we find that M∗∗ ∼= M because left and right duals are the
same thing (we can then use Theorem 3.4.4).

Let a : M → M be an R-linear map, and suppose that aij = δj(a(mi)). The trace of a in the above sense is
then the morphism

trM (a) : R → R : r 7→ r

k∑
i=1

δi(a(mi)) = r

k∑
i=1

aii. (3.55)

We want to show that categorical traces share some of the important properties with the standard trace, as
one would expect from the above Example 33.

Before we can do this, we will prove a little lemma that shows that morphisms can be rotated along curves
in the graphical calculus.

Lemma 3.5.3. Let C be a monoidal category, let A,B ∈ Ob (C), and let f : A → B in C. If left duals
(A∗, evA, coevA) and (B∗, evB , coevB) or right duals (∗A, evA, coevA) and (∗B, evB , coevB) of A and B
exist, then f can be rotated along curves in the following way

f = f = f∗ or f = f = ∗f , (3.56)
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and

f = f = f∗ or f = f = ∗f . (3.57)

Note that clockwise rotations result in left duals, and anticlockwise rotations in right duals.

Proof. We will only prove the first equality of (3.56) using graphical calculus. From (3.18) and (3.24), we
obtain

f∗ = f = f . (3.58)

■

Proposition 3.5.4 (Properties of the traces, [EGNO15, Proposition 4.7.3]). Let C be a category that is
left (resp. right) rigid, let A,B ∈ Ob (C), and let a ∈ HomC(A,A∗∗) , b ∈ HomC(B,B∗∗) , c ∈ HomC(A,A)
(resp. a ∈ HomC(A, ∗∗A) , b ∈ HomC(B, ∗∗B)). The following properties hold

1. trleftA (a) = trrightA (a∗) (resp. trrightA (a) = trleftA (∗a)),

2. trleftA⊗B(a⊗ b) = trleftA (a)⊗ trleftB (b) (resp. trrightA⊗B(a⊗ b) = trrightA (a)⊗ trrightB (b)),

3. trleftA (a ◦ c) = trleftA (c∗∗ ◦ a) (resp. trrightA (a ◦ c) = trrightA (∗∗c ◦ a)).

4. if, in addition, C is additive and the monoidal product is bilinear on morphisms, then trleftA⊕B(a ⊕ b) =

trleftA (a) + trleftB (b) (resp. trrightA⊕B(a⊕ b) = trrightA (a) + trrightB (b)).

Proof. Lemma 3.5.3 implies (1) and (3). The second property (2) is immediately obvious from the graphical
calculus and Lemma 3.4.6. For the last property (4), note that trleftA : HomC(A,A∗∗) → HomC(1,1) is linear
due to the composition and monoidal product being bilinear. Now, trleftA⊕B(a⊕ b) = trleftA⊕B(iA

∗∗ ◦ a ◦ pA +

iB
∗∗ ◦ b ◦ pB) = trleftA (pA

∗∗ ◦ iA∗∗ ◦ a) + trleftB (pB
∗∗ ◦ iB∗∗ ◦ b) = trleftA (a) + trleftB (b) (and a similar proof

holds for right traces). ■

3.5.2 Pivotal categories

The categorical traces we have defined above are not entirely satisfactory for two reasons:

1. we have two different notions of a categorical trace on rigid monoidal categories: a left and a right
trace,

2. we take traces of morphisms to double duals, not of endomorphisms as we would expect.

It turns out that the general definition needs to be stated this way, and that these issues are only resolved in
specific types of rigid monoidal categories.

First we will introduce categories which solve the second issue.

Definition 3.5.5 (Pivotal structures on monoidal categories, [EGNO15, Definition 4.7.8]). Let C be a
rigid monoidal category. A pivotal structure on C is a monoidal natural isomorphism α : idC → −∗∗, i.e. a
collection of isomorphisms αA : A → A∗∗ for all A ∈ Ob (C) such that α1 = id1, αA⊗B = αA ⊗αB for all
A,B ∈ Ob (C), and such that the following diagram commutes for all f : A → B in C

A A∗∗

B B∗∗

f

αA

f∗∗

αB

. (3.59)

A monoidal category equipped with a pivotal structure is called a pivotal category.
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Remark 3.5.6. The pivotal structure in the above definition could be called a left pivotal structure, and one
could introduce a right pivotal structure similarly. However, Theorem 3.4.4 ensures that, on rigid categories,
a left pivotal structure induces a right pivotal structure and vice versa. Indeed, α∗∗A : ∗∗A → (∗∗A)∗∗ ∼=
(∗A)∗ ∼= A, taking the inverse yields a right pivotal structure βA = α−1

∗∗A.

Remark 3.5.7. Equivalently, a pivotal structure on C is a monoidal natural isomorphism ζ : ∗− → −∗. This
follows from Proposition 3.4.4 by setting ζA := ∗αA : ∗A → A∗.

In pivotal categories, we have a stronger version of Proposition 3.5.4 (3).

Lemma 3.5.8. Let C be a pivotal category with pivotal structure α. Let A,B ∈ Ob (C), let f : A → B, and
let g : B → A. We have

trleftA (αA ◦ g ◦ f) = trleft(αB ◦ f ◦ g) and trrightA (g ◦ f ◦ α−1
A ) = trrightB (f ◦ g ◦ α−1

B ). (3.60)

Proof. This follows from Lemma 3.5.3. ■

Lemma 3.5.9 ([EGNO15, Exercise 4.7.9]). Let C be a rigid monoidal category, let α be a pivotal structure on
C, and let A ∈ Ob (C). Then

αA∗ = (αA
∗)

−1
. (3.61)

From this, we conclude

αA∗∗ =
(
(αA∗)∗

)−1
=

((
(αA

∗)−1
)
∗
)−1

= αA
∗∗. (3.62)

Proof. The commutativity of

1 1

A⊗A∗ (A⊗A∗)∗∗

α1=id1

coevA coevA
∗∗

αA⊗A∗=αA⊗αA∗

(3.63)

implies that

αA αA∗ = . (3.64)

As a consequence, we obtain

αA
∗

αA∗

=

αA

αA∗

= = . (3.65)

■

Traces also allow us to introduce an intrinsic notion of dimensions of objects.

Definition 3.5.10 (Dimensions of objects, [EGNO15, Definition 4.7.11]). Let C be a pivotal category
with pivotal structure α (β is defined as in Remark 3.5.6), and let A ∈ Ob (C). The left (resp. right) dimension
of A is defined as

dimleft
α (A) := trleftA (αA) (resp. dimright

α (A) := trrightA (βA)). (3.66)
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Remark 3.5.11. We would like to note that this intrinsic notion of dimension does not necessarily coincide
with the notion of dimension we are used to. For example, if K is a field of characteristic p > 0, then Kp is a
vector space of dimension p in the usual sense, and of dimension 0 in the categorical sense (as the categorical
dimension is a scalar in K, or rather a morphism K → K, and not an integer).

Example 34. Let (C,⊗,1, α, λ, ρ) be a pivotal category. We have

dimleft(1) = dimright(1) = id1. (3.67)

Indeed, Example 29 shows that ev1 = λ1 = ρ1 and coev1 = ev−1
1 . As α1 = id1 for the pivotal structure,

we then find trleft(α1) = λ1 ◦ λ−1
1 = id1.

More generally, for f : 1 → 1, we have

trleft1 (f) = ρ1 ◦ (f ⊗ id1) ◦ ρ−1
1 = f and trright1 (f) = λ1 ◦ (id1 ⊗ f) ◦ λ−1

1 = f. (3.68)

Remark 3.5.12. Let C be a pivotal category with pivotal structure α. When are the left and right dimensions
the same, i.e. when does trleft(αA) = trright(βA) hold for an object A ∈ Ob (C)?

Similarly to Lemma 3.5.9, we obtain β∗A = (∗βA)
−1, and thus α∗∗∗A = (∗α∗∗A)

−1. Using this, ∗−∗ = idC ,
Proposition 3.5.4, and Lemma 3.5.9, we obtain

trright(βA) = trright
(
α−1

∗∗A

)
= trright

((
(∗α∗∗A)

−1
)
∗
)

= trright
(
(α∗∗∗A)

∗)
= trleft (α∗∗∗A)

= trleft
(
(α∗∗∗A)

∗∗)
= trleft (α∗A)

= trleft
(
(α∗A)

∗∗)
= trleft (αA∗) .

(3.69)

We thus find
dimleft

α (A) = dimright
α (A) if and only if dimleft

α (A) = dimleft
α (A∗). (3.70)

3.5.3 Spherical categories

Finally, we introduce categories in which the left and right categorical traces coincide.

Definition 3.5.13 (Spherical structures on monoidal categories, [BW99, Definition 2.5]). Let C be
a rigid monoidal category, and let α be a pivotal structure on C. α is called spherical if, for any object
A ∈ Ob (C), and any endomorphism f : A → A, we have

trleft(αA ◦ f) = trright(f ◦ α−1
A ). (3.71)

A rigid monoidal category C equipped with a spherical structure is called a spherical category. For any
endomorphism f : A → A in C, we define the trace as

tr(f) = trA(f) := trleft(αA ◦ f) = trright(f ◦ α−1
A ), (3.72)
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i.e.

tr(f) =

αA

f

=

f

α−1
A

. (3.73)

Remark 3.5.14. In monoidal categories that are also abelian and where the monoidal and abelian structures
are compatible, commonly referred to as tensor categories (see Chapter 4), one can alternatively define spher-
ical categories through Remark 3.5.12. Specifically, this means requiring that

dimleft
α (A) = dimleft

α (A∗) for all objects A ∈ Ob (C) . (3.74)

This formulation of spherical tensor categories appears in [EGNO15, Definition 4.7.14]. Furthermore, [EGNO15,
Theorem 4.7.15] shows that this definition is equivalent to the one we have introduced. One direction of the
equivalence follows directly from Proposition 3.5.4 and Remark 3.5.12, using the identities

trright(α−1
A ) = trleft(∗α−1

A ) = trleft(α−1
A

∗) = trleft(αA∗). (3.75)

3.6 Braided monoidal categories

3.6.1 Braidings

In Example 30 we discussed how the duals of modules are both left and right modules, and that this is because
of the existence of a “swap map” on the tensor product of modules. In this section we will generalise this to
the setting of braidings.

Braidings will be particularly important for us because they enable us to address the commutativity of alge-
bras within categories (as will be discussed in Chapter 6).

Remark 3.6.1. From the perspective of categorification, braided monoidal categories arise naturally as cate-
gorified analogues of commutative monoids.

Definition 3.6.2 (Braidings on monoidal categories, [Lan78, § XI.1] and [EGNO15, Definition 8.1.1]).
Let (C,⊗,1, α, λ, ρ) be a monoidal category. A braiding (or commutativity constraint, which is a term often
used in older papers such as [DM82; Del90; Del02]) on this monoidal category is a natural isomorphism
γ : ⊗ → ⊗op, i.e. a class of isomorphisms γ(A,B) : A ⊗ B → B ⊗ A such that the following diagram
commutes for all f : A → B and g : X → Y in C

A⊗X X ⊗A

B ⊗ Y Y ⊗B

f⊗g

γ(A,X)

g⊗f

γ(B,Y )

, (3.76)
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such that, in addition, the following diagrams commute for all A,B,C ∈ Ob (C)

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

γ(A,B⊗C)

α(B,C,A)α(A,B,C)

γ(A,B)⊗idC
α(B,A,C)

idB⊗γ(A,C)

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

γ(A⊗B,C)

α−1
(C,A,B)

α−1
(A,B,C)

idA⊗γ(B,C) α−1
(A,C,B)

γ(A,C)⊗idB

(3.77)

These identities are called the hexagon identities.

The tuple (C,⊗,1, α, λ, ρ, γ) is called a braided monoidal category.

Graphically, we denote braidings and their inverses by letting the lines cross

γ(A,B) =
B

B

A

A

and γ−1
(A,B) =

B

B

A

A

, (3.78)

note that which edge crosses over the other one determines whether we are working with the braiding or its
inverse.

Naturality of the braiding then becomes

f g

A X

Y

Y

B

B

=

fg

BY

X

X

A

A
, (3.79)

which shows that we can “slide” morphisms through braidings.

The hexagon identities graphically become

B

B

C

C

A

A

=

BA C

C AB

and

C

C

A

A

B

B

=

CBA

C A B

. (3.80)

Example 35 (The reverse of a braided monoidal category). Let (C,⊗,1, α, λ, ρ, γ) be a braided monoidal
category. We can define a braided monoidal category (C,⊗,1, α, λ, ρ, γrev), called the reverse braided monoidal
category, through the reverse monoidal braiding γrev

(A,B)
:= γ−1

(B,A). Note that both γ and γrev are monoidal
braidings on the same monoidal category.
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Definition 3.6.3 (Symmetric categories, [Lan78, §XI.1] and [EGNO15, Definition 8.1.12]). Let (C,⊗,1, α, λ, ρ, γ)
be a braided monoidal category. It is called a symmetric category, and γ is called a symmetric braiding, if

γ(B,A) ◦ γ(A,B) = idA⊗B for all A,B ∈ Ob (C) , i.e. if γ−1
(B,A) = γ(A,B). (3.81)

Graphically, this is
BA

=

A B

. (3.82)

Note that the reverse braiding on a monoidal category is the original braiding if and only if that original
braiding is symmetric.

Example 36 (Swap map on modules). Let R be a commutative ring. The monoidal category of R-modules
RMod can be equipped with a braiding, called the swap map, defined by the universal property of the tensor
product

M ×N M ⊗N

N ⊗M

⊗

s
swap(M,N) , where s : M ×N → N ⊗M : (m,n) 7→ n⊗m. (3.83)

It is easy to see that swap−1
(M,N) = swap(N,M), which implies that RMod equipped with the swap map is

symmetric.

Example 37 (Signed swap map on representations, [EGNO15, Example 9.9.1 (3)]). Let G be a group,
letK be a field, and letFinRepK(G) be the monoidal category ofK-linear finite-dimensionalG-representations.
Suppose that there is some central element z ∈ G such that z2 = 1G. For any representation, we find a basis
such that for all m in this basis ρ(z)(m) = (−1)δmm with δm ∈ {0, 1}. We define the signed swap map
through the universal property of the tensor product

M ×N M ⊗N

N ⊗M

⊗

s
signedswap((M,ρ),(N,σ))

, where s : M ×N → N ⊗M : (m,n) 7→ (−1)δmδnn⊗m.

(3.84)
We can check that signedswap is a morphism in FinRepK(G), i.e. that

signedswap((M,ρ),(N,σ)) ◦ (ρ(g)⊗ σ(g)) = (σ(g)⊗ ρ(g)) ◦ signedswap((N,σ),(M,ρ)) for all g ∈ G. (3.85)

It is once again easy to see that signedswap−1
((M,ρ),(N,σ)) = signedswap((N,σ),(M,ρ)).

FinRepK(G) equipped with this braiding is denoted by FinRepK(G, z).

Example 38 (Super-vector spaces). Setting G = Z/2Z and z the nontrivial element of Z/2Z in the above
Example 37, we retrieve the braided monoidal category of super-vector spaces FinsVectK.

The structure-preserving functors for braided monoidal categories are called braided monoidal functors.
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Definition 3.6.4 (Braided monoidal functors, [EGNO15, Definition 8.1.7]). Let (C,⊗C ,1C , αC , λC , ρC , γC)
and (D,⊗D,1D, αD, λD, ρD, γD) be braided monoidal categories, and let (F, ζ, ε) be a monoidal functor be-
tween the underlying monoidal categories. This monoidal functor is called braided if the following diagram
commutes for all A,B ∈ Ob (C)

F (A)⊗D F (B) F (B)⊗D F (A)

F (A⊗C B) F (B ⊗C A)

(γD)(F (A),F (B))

ε(A,B) ε(B,A)

F ((γC)(A,B))

. (3.86)

Although we have not assumed braidings to be particularly well-behaved with regard to the monoidal struc-
ture (we did not mention unitors, . . . ), we will now show that braidings automatically interact well with the
monoidal unit.

Lemma 3.6.5 ([Kas94, Proposition XIII.1.2] and [EGNO15, Exercise 8.1.6]). Let (C,⊗,1, α, λ, ρ, γ) be
a braided monoidal category. For all A ∈ Ob (C), we have

λA ◦ γ(A,1) = ρA and ρA ◦ γ(1,A) = λA. (3.87)

As a consequence, we find γ(1,A) = γ−1
(A,1). In particular, γ(1,1) = id1.

Proof. Let A,B ∈ Ob (C). We claim that the following diagram is commutative

(A⊗ 1)⊗B A⊗ (1⊗B) (1⊗B)⊗A

A⊗B B ⊗A 1⊗ (B ⊗A)

(1⊗A)⊗B 1⊗ (A⊗B) 1⊗ (B ⊗A)

γ(A,1)⊗idB

α(A,1,B)

ρA⊗idB

idA⊗λB

γ(A,1⊗B)

α(1,B,A)
λB⊗idA

γ(A,B) λB⊗A

λA⊗idB

α(1,A,B)

λA⊗B

id1⊗γ(A,B)

λB⊗A
id1⊗(B⊗A)

. (3.88)

Indeed, the commutativity of every little square or triangle, except for the left one, follows from one of the
axioms of monoidal categories or from the naturality of the braiding. The left triangle then automatically
commutes too by composing with the isomorphism γ(A,B), using the commutativity of the other parts, and
the hexagon identity (3.77).

Setting B = 1, we find
(λA ◦ γ(A,1))⊗ id1 = ρA ⊗ id1. (3.89)

This implies that λA ◦ γ(A,1) = ρ1 ◦ (ρA ⊗ id1) ◦ ρ−1
1 = ρA. ■

Theorem 3.6.6 (Yang-Baxter, [Kas94, Theorem XIII.1.3] and [EGNO15, Proposition 8.1.10]). Let C
be a monoidal category equipped with a braiding γ. For any A,B,C ∈ Ob (C), the following Yang-Baxter
equation holds

BA C

C B A

=

A CB

B AC

. (3.90)

Proof. Through the first hexagon identity (3.77), we find

(γ(B,C) ⊗ idA) ◦ (idB ⊗ γ(A,C)) ◦ (γ(A,B) ⊗ idC) = (γ(B,C) ⊗ idA) ◦ γ(A,B⊗C), (3.91)
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and through the naturality of the braiding γ, we then find

(γ(B,C) ⊗ idA) ◦ γ(A,B⊗C) = γ(A,B⊗C) ◦ (idA ⊗ γ(B,C)). (3.92)

Using the hexagon identity for the inverse braiding, we then find

γ(A,B⊗C) ◦ (idA⊗γ(B,C)) = (idB ⊗γ(A,C))◦ (γ(A,B)⊗ idC)◦ (idA⊗γ(B,C)) = (idB ⊗γ(A,C))◦γ(A⊗B,C).
(3.93)

■

3.6.2 Braidings and duals

Braidings allows us to define right (resp. left) duals from left (resp. right) duals, which is what we already
noted in Example 30.

Proposition 3.6.7 ([Sel10, Lemma 3]). Let C be a left (resp. right) rigid monoidal category with a braiding
γ. C is then also right (resp. left) rigid, hence rigid.

Explicitly, if A ∈ Ob (C) has a left dual (A∗, evA, coevA), it is immediately also equipped with a right dual
(A∗, evA, coevA), where

evA =

A

A

A

A

and coevA =

A

A

A

A

. (3.94)

Proof. Suppose that A is an object with a left dual (A∗, evA, coevA), and let (A∗, evA, coevA) be as defined
above.

Writing out the left side of the first zigzag equation for right duals (3.22), and inserting (idA∗ ⊗ γ−1
(A,A)) ◦

(idA∗ ⊗ γ(A,A)) in the middle, we obtain

A

A

A

A

A

A

=

A

A

A

A

A

A

. (3.95)

Through the hexagon identities (3.77) and the naturality of the braiding γ, we then see that (as in the proof
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of the Yang-Baxter equation, Theorem 3.6.6)

A A

A

A

A A

=

A A

A

A

A

A

=

AA

A

A

A

A

. (3.96)

This implies that

A

A

A

A

A

A

=

A

A

A

A

A

A

=

A

A

A

A

A

A

=

A

A

A

A

A

A

A

. (3.97)

Applying naturality of the braiding once again, we find

A

A

A

A

A

A

=

A

A

A

A

A =

A

A

, (3.98)

where we used the zigzag equation for the left dual (3.18), and the fact that the top braiding is γ(A,1) and the
bottom one is γ−1

(A,1). ■

Corollary 3.6.8 ([Sel10, § 4.4.5] and [EGNO15, Proposition 8.10.6]). Let C be a rigid monoidal category
equipped with a braiding γ. There is a natural isomorphism

ω : idC → idC
∗∗, (3.99)

called the Drinfeld morphism.
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Explicitly, the natural isomorphism and its inverse are given by

ωA =

A

A∗

A∗∗

and ω−1
A =

A

A∗∗

A∗

. (3.100)

Proof. This follows from the proof of Proposition 3.6.7 directly, or equivalently from Proposition 3.4.3 and
the statement of Proposition 3.6.7 by noting that both A and A∗∗ are left duals of A∗ due to Theorem 3.4.4.
Naturality follows from Lemma 3.5.3 and naturality of the braiding (3.79). ■

Corollary 3.6.8 seems to indicate that there might be a pivotal structure on most rigid braided monoidal
categories. However, it is not guaranteed that the natural isomorphism defined here is monoidal! In Theo-
rem 3.6.11 below, we will show that a braided category is pivotal if and only if there is a natural isomorphism
idC → idC that is monoidal up to the braiding.

Lemma 3.6.9 ([EGNO15, Proposition 8.9.3]). Let C be a rigid monoidal category with a braiding γ. The
Drinfeld natural isomorphism ω : idC → idC

∗∗, defined in Corollary 3.6.8, satisfies

ωA ⊗ ωB = ωA⊗B ◦ γ(B,A) ◦ γ(A,B) for all A,B ∈ Ob (C) . (3.101)

Proof. Graphically, we have

ωA⊗B ◦ γ(B,A) ◦ γ(A,B) =

A B

B∗ B∗∗A∗ A∗∗

A∗∗ B∗∗

AA∗ BB∗

. (3.102)

We have

= , (3.103)
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and splitting up the braiding γ(A⊗B,B∗⊗A∗) in this diagram gives

= . (3.104)

This then implies that

ωA⊗B ◦ γ(B,A) ◦ γ(A,B) =

A B

B∗ B∗∗A∗ A∗∗

A∗∗ B∗∗

AA∗ BB∗

. (3.105)

Applying the naturality of the braiding (3.79) then gives

ωA⊗B ◦ γ(B,A) ◦ γ(A,B) =

A B

B∗ B∗∗A∗ A∗∗

A∗∗ B∗∗

AA∗

BB∗

, (3.106)
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and applying it again finally shows that

ωA⊗B ◦ γ(B,A) ◦ γ(A,B) =

A B

B∗ B∗∗A∗ A∗∗

A∗∗ B∗∗

AA∗

BB∗

= ωA ⊗ ωB . (3.107)

■

Definition 3.6.10 (Twists, [Sel10, Definition 17] and [EGNO15, Definition 8.10.1]). Let C be a monoidal
category equipped with a braiding γ. A twist (or balance) is a natural isomorphism θ : idC → idC such that

θA⊗B = γ(B,A) ◦ γ(A,B) ◦ (θA ⊗ θB) for all A,B ∈ Ob (C) . (3.108)

A braided monoidal category equipped with a twist is called a balanced monoidal category.

If, in addition, the category is rigid, and θA
∗ = θA∗ for all A∗ ∈ Ob (C), then the twist is called a ribbon, and

the category is called a ribbon category.

The following remarkable theorem shows that braidings that allow twists induce pivotal structures on the
category.

Theorem 3.6.11 ([Sel10, Lemma 4] and [EGNO15, § 8.10]). Let C be a rigid monoidal category equipped
with a braiding γ. Any twist θ on this braided monoidal category induces a pivotal structure and every pivotal
structure induces a twist.

In particular; every rigid symmetric monoidal category is pivotal by choosing θ = id.

Proof. This follows easily from the above Lemma 3.6.9. Suppose that we are provided with a twist θ, then we
can define the natural isomorphism

αA := ωA ◦ θA : A → A∗∗ for A ∈ Ob (C) . (3.109)

For all A,B ∈ Ob (C), we then find

αA⊗αB = (ωA⊗ωB)◦(θA⊗θB) = ωA⊗B ◦γ(B,A)◦γ(A,B)◦(θA⊗θB) = ωA⊗B ◦θA⊗B = αA⊗B . (3.110)

Conversely, suppose that α is a pivotal structure on C. We can then define

θA := ω−1
A ◦ αA for A ∈ Ob (C) , (3.111)

and for all A,B ∈ Ob (C) we see that

θA⊗B = ω−1
A⊗B ◦αA⊗B = γ(B,A)◦γ(A,B)◦(ω−1

A ⊗ω−1
B )◦(αA⊗αB) = γ(B,A)◦γ(A,B)◦(θA⊗θB). (3.112)

■
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Corollary 3.6.12 ([Sel10, Lemma 5] and [EGNO15, Proposition 8.10.12]). Let C be a rigid monoidal
category with a braiding γ. If, in addition, C is equipped with a ribbon structure θ, then C, equipped with the
pivotal structure defined in Theorem 3.6.11, is spherical.

In particular; every rigid symmetric monoidal category is spherical.

Proof. Let α = ω ◦ θ be the pivotal structure defined in Theorem 3.6.11, and let f : A → A be any endomor-
phism in C. As θ is ribbon, Lemma 3.5.9 implies that

ωA
∗ = (αA ◦ θ−1

A )∗ = θ−1
A∗ ◦ αA

∗ = θ−1
A∗ ◦ α−1

A∗ . (3.113)

Applying the naturality of the braiding (3.79), we then find

trleft(αA ◦ f) = θA

ωA

f

=
θA

f

=

θA

f . (3.114)

We want to obtain the right trace, so we should introduce the evaluation and coevaluation (3.94). Inserting
γ(A∗,A) ◦ γ−1

(A∗,A), and using the naturality and twist property (3.108) of θ, we find

trleft(αA ◦ f) =

θA

f

=

f

θA

=

f

θAθA∗

θ−1
A∗

=

f

θA∗⊗A

θ−1
A∗

=
f

θA∗⊗A

θ−1
A∗

. (3.115)

Using Lemma 3.6.5 and the twist property (3.108), we find θ1⊗1 = θ1⊗θ1. Proposition 4.1.1 then shows that
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θ1 = id1. As a consequence, we find (after applying naturality of θ once again)

trleft(αA ◦ f) =
fθ−1

A∗

=

∗θ−1
A∗

f
=

f

θ−1
A =

f

ω−1
A

θ−1
A

=

f

α−1
A

= trright(f ◦ α−1
A ).

(3.116)
■

3.6.3 Action of the braid group on monoidal powers

Following [EGNO15, § 8.2], we will show that there is a natural action of the braid group on monoidal powers
in braided monoidal categories.

Definition 3.6.13 (Braid groups). For any n ∈ N, we define the braid group on n strands as the group with
the presentation

Bn := ⟨σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 for all i < n− 1, and σmσn = σnσm for all |m− n| > 1⟩.
(3.117)

Theorem 3.6.14 ([EGNO15, Remark 8.2.5]). Let C be a braided monoidal category. For any object A ∈
Ob (C), and any n ≥ 1, there is a natural action of the braid group Bn on A⊗n = ⊗n

i=1A through automor-
phisms, i.e. there is a group morphism

Bn AutC(A
⊗n) . (3.118)

If the braiding is symmetric, then this group morphism factors through the symmetric group Sn, i.e.

Bn Sn AutC(A
⊗n)

σ2
i=1

. (3.119)

Proof. For i = 1, . . . , n − 1, define σi := idA⊗(i−1) ⊗ γ(A,A) ⊗ idA⊗(n−i−1) . The Yang-Baxter equation
(Theorem 3.6.6) shows that

σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1 for all i < n− 1, (3.120)

and functoriality of the monoidal product also shows that

σm ◦ σn = σn ◦ σm for all |m− n| > 1. (3.121)

The final statement follows from the fact that the Coxeter presentation of the symmetric group is

Sn = ⟨σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 for i < n−1, σmσn = σnσm for |m−n| > 1, σ2
i = 1 for all i⟩.

(3.122)
■

In the remainder of this section, we compute the trace of arbitrary elements of Sn acting on A⊗n.
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Lemma 3.6.15. Let C be a left rigid symmetric monoidal category, and let A ∈ Ob (C). For any n ≥ 1, we
have

A

A⊗n

A⊗n

A

=

A

A

=

A

A⊗n

A⊗n

A

, (3.123)

where thicker lines correspond to A⊗n and

A A⊗n

=
AA⊗n

(3.124)

by regrouping (i.e. rebracketing of A⊗(n+1)).

Proof. The base case n = 1 follows from Proposition 3.6.7.

Suppose now that n > 1. As in the proof of Proposition 3.6.7, we have

= = = = , (3.125)

and similarly

= = . (3.126)
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Decomposing

A⊗n

=
A A⊗(n−1)

=
AA⊗(n−1)

, (3.127)

Lemma 3.4.6 shows that

= =

= =

. (3.128)

Inserting this into (3.125), and using the naturality of the braiding (3.79), we find

= = . (3.129)

For (3.126), this gives

= = . (3.130)

We then conclude the result by induction (using the fact that the braiding is symmetric). ■

Proposition 3.6.16. Let C be a rigid symmetric monoidal category, let n ≥ 1, and let σ := γ(A,A⊗n) (σ is
thus a cyclic permutation acting on A⊗(n+1)). Provided with the canonical spherical structure on C induced by
the twist θ = id (Theorem 3.6.11, Corollary 3.6.12), we have

trA(σ) = trA(idA) = dim(A). (3.131)
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Proof. Lemma 3.6.9 implies that ωA⊗(n+1) = ωA ⊗ ωA⊗n . We thus find

tr(σ) =

A

A⊗n

. (3.132)

Decomposing
A⊗n

=
A A⊗(n−1)

=
AA⊗(n−1)

, (3.133)

we find

= = = . (3.134)

Lemma 3.6.15 now shows that the statement holds. ■

Corollary 3.6.17. Let C be a rigid symmetric monoidal category, let n ≥ 1, and let A ∈ Ob (C). Let σ ∈ Sn

be a permutation of cycle type cm1
1 cm2

2 · · · cmd

d , meaning that σ can be written as a product of mi disjoint cycles
of length ci for each i, where the cycles are pairwise disjoint and

∑d
k=1 ckmk = n. For the induced morphism

σ : A⊗n → A⊗n, we have
tr(σ) = ⊗d

k=1 ⊗
mk

ℓ=1 dim(A). (3.135)

Proof. We know that σ = ⊗d
k=1⊗

mk

ℓ=1 σ
ℓ
ck

, where σℓ
ck

is a cycle of length ck . Using tr(f ⊗ g) = tr(f)⊗ tr(g)
(Proposition 3.5.4) and the above Proposition 3.6.16, we then see that

trA⊗n(σ) = ⊗d
k=1 ⊗

mk

ℓ=1 trA⊗ck (σ
ℓ
ck
) = ⊗d

k=1 ⊗
mk

ℓ=1 dim(A). (3.136)

■

74



4 Tensor Categories

At this point, we have all the necessary components in place to define the categories we are truly interested
in: tensor categories. In this chapter, we will show how tensor categories naturally combine the structure of
abelian categories and monoidal categories with duals.

4.1 Endomorphisms on the monoidal unit

Before introducing special types of categories combining abelian and monoidal structures, we first observe
that the endomorphism monoid of the monoidal unit exhibits particularly nice behaviour, and that the cat-
egory is naturally enriched over this monoid. This enrichment becomes especially interesting when the
category is additionally pre-additive or abelian, which is the context we will consider in this chapter.

Proposition 4.1.1. Let (C,⊗,1, α, λ, ρ) be a monoidal category. The composition turns HomC(1,1) into a
commutative monoid, and for any two f, g ∈ HomC(1,1) we can write the composition as

f ◦ g = λ1 ◦ (f ⊗ g) ◦ λ−1
1 . (4.1)

If, in addition, C is pre-additive, this implies that HomC(1,1) is a commutative ring. If C is abelian and 1 is
simple, then we find that HomC(1,1) is a field.

Proof. Using the fact that the left and right unitors λ and ρ are natural isomorphisms ((3.2) and (3.3)), and
λ1 = ρ1, we find

f ◦ g = f ◦ λ1 ◦ (id1 ⊗ g) ◦ λ−1
1

= λ1 ◦ (f ⊗ id1) ◦ (id1 ⊗ g) ◦ λ−1
1

= λ1 ◦ (f ⊗ g) ◦ λ−1
1

. (4.2)

Using the same properties, we find

f ◦ g = λ1 ◦ (f ⊗ g) ◦ λ−1
1

= λ1 ◦ (id1 ⊗ g) ◦ (f ⊗ id1) ◦ λ−1
1

= g ◦ λ1 ◦ λ−1
1 ◦ f

= g ◦ f

. (4.3)

The final statement follows from Schur’s lemma 2.4.9. ■

Next, we will show that the category is enriched over this commutative monoid.

Proposition 4.1.2. Let (C,⊗,1, α, λ, ρ) be a monoidal category. There exist left and right actions of (HomC(1,1) , ◦)
on all the hom-sets. For every A,B ∈ Ob (C) and f ∈ HomC(A,B) , ζ ∈ HomC(1,1), we define

ζ · f := A 1⊗A 1⊗B B
λ−1
A ζ⊗f λB ,

f · ζ := A A⊗ 1 B ⊗ 1 B
ρ−1
A f⊗ζ ρB

.

(4.4)

Proposition 4.1.1 shows that these actions coincide with the composition on HomC(1,1).

1. If there exists a braiding on this category, then these two actions coincide.

75



4 Tensor Categories

2. The above maps define actions in the sense that, for any A,B ∈ Ob (C) and for all f ∈ HomC(A,B),
ζ, ξ ∈ HomC(1,1), we have

(ζ ◦ ξ) · f = ζ · (ξ · f),
f · (ζ ◦ ξ) = (f · ζ) · ξ.

(4.5)

3. The composition is linear with respect to these actions; more precisely, for all A,B,C ∈ Ob (C) and
f ∈ HomC(B,C) , g ∈ HomC(A,B) , ζ ∈ HomC(1,1), we have

ζ · (f ◦ g) = (ζ · f) ◦ g = f ◦ (ζ · g),
(f ◦ g) · ζ = (f · ζ) ◦ g = f ◦ (g · ζ).

(4.6)

4. These actions are compatible with each other, meaning that for anyA,B ∈ Ob (C) and f ∈ HomC(A,B) , ζ, ξ ∈
HomC(1,1), we have

(ζ · f) · ξ = ζ · (f · ξ). (4.7)

5. These actions are also compatible with the monoidal product, meaning that for any A,B,X, Y ∈ Ob (C),
f ∈ HomC(A,B), g ∈ HomC(X,Y ), and ζ ∈ HomC(1,1), we have

(f · ζ)⊗ g = f ⊗ (ζ · g),
(ζ · f)⊗ g = ζ · (f ⊗ g),

f ⊗ (g · ζ) = (f ⊗ g) · ζ.
(4.8)

6. If the monoidal product is linear in both arguments with respect to one of the actions (that is, if either
f ⊗ (ζ · g) = ζ · (f ⊗ g) always holds, or (f · ζ)⊗ g = (f ⊗ g) · ζ always holds), then the two actions
coincide.

7. If C is pre-additive, then every hom-set becomes a HomC(1,1)-bimodule.

Proof. Note that, using the fact that the left and right unitors are natural isomorphisms ((3.2) and (3.3)), we
can rewrite the actions as

ζ · f = λB ◦ (ζ ⊗ idB) ◦ λ−1
B ◦ f = f ◦ λA ◦ (ζ ⊗ idA) ◦ λ−1

A ,

f · ζ = ρB ◦ (idB ⊗ ζ) ◦ ρ−1
B ◦ f = f ◦ ρA ◦ (idA ⊗ ζ) ◦ ρ−1

A .
(4.9)

1. Let γ be a braiding on this category. Using Lemma 3.6.5 and the naturality of the braiding (3.76), we
find

ρ−1
B ◦ λB ◦ (ζ ⊗ idB) ◦ λ−1

B ◦ ρB = γ(1,B) ◦ (ζ ⊗ idB) ◦ γ(B,1)

= (idB ⊗ ζ) ◦ γ(1,B) ◦ γ(B,1)

= idB ⊗ ζ

. (4.10)

Using (4.9), we then conclude that ζ · − = − · ζ .

2. This follows from (4.9).

3. This also follows from (4.9).

4. Using the fact that the left unitor is a natural isomorphism (3.2), and functoriality of the monoidal
product, we find

(λA ◦ (ζ ⊗ idA) ◦ λ−1
A ) ◦ (ρA ◦ (idA ⊗ ξ) ◦ ρ−1

A ) = λA ◦ (ζ ⊗ idA) ◦ (id1 ⊗ (ρA ◦ idA ⊗ ξ ◦ ρ−1
A )) ◦ λ−1

A

= λA ◦ (id1 ⊗ (ρA ◦ idA ⊗ ξ ◦ ρ−1
A )) ◦ (ζ ⊗ idA) ◦ λ−1

A

= (ρA ◦ (idA ⊗ ξ) ◦ ρ−1
A ) ◦ (λA ◦ (ζ ⊗ idA) ◦ λ−1

A )

.

(4.11)
Applying this to (4.9), we conclude that the actions are compatible.
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5. Using the naturality of the associator (3.1), the triangly identity (3.5), and functoriality of the monoidal
product, we find

f ⊗ (ζ · g) = (idB ⊗ λY ) ◦ (f ⊗ (id1 ⊗ idY )) ◦ (idA ⊗ (ζ ⊗ g)) ◦ (idA ⊗ λ−1
X )

= (idB ⊗ λY ) ◦ (f ⊗ (id1 ⊗ idY )) ◦ (idA ⊗ (ζ ⊗ g)) ◦ α(A,1,X) ◦ (ρA ⊗ idX)

= (idB ⊗ λY ) ◦ (f ⊗ (id1 ⊗ idY )) ◦ α(A,1,Y ) ◦ ((idA ⊗ ζ)⊗ g) ◦ (ρA ⊗ idX)

= (idB ⊗ λY ) ◦ α(B,1,Y ) ◦ ((f ⊗ id1)⊗ idY ) ◦ ((idA ⊗ ζ)⊗ g) ◦ (ρA ⊗ idX)

= (ρB ⊗ idY ) ◦ ((f ⊗ ζ)⊗ g) ◦ (ρA ⊗ idX)

= (f · ζ)⊗ g

. (4.12)

Using the naturality of the associator (3.1) and the identity λA⊗ idX = λA⊗X ◦α1,A,X (an alternative
form of the triangle identity (3.5), see Lemma 2.5 on this nLab page, [aut25c], for a proof), we find

(ζ · f)⊗ g = (f ⊗ g) ◦ (λA ⊗ idX) ◦ ((ζ ⊗ idA)⊗ idX) ◦ (λ−1
A ⊗ idX)

= (f ⊗ g) ◦ λA⊗X ◦ α(1,A,X) ◦ ((ζ ⊗ idA)⊗ idX) ◦ α−1
(1,A,X) ◦ λ

−1
A⊗X

= (f ⊗ g) ◦ λA⊗X ◦ (ζ ⊗ (idA⊗X)) ◦ λ−1
A⊗X

= ζ · (f ⊗ g)

. (4.13)

Similarly, one proves
f ⊗ (g · ζ) = (f ⊗ g) · ζ. (4.14)

6. Suppose that (f · ζ)⊗ g = (f ⊗ g) · ζ always holds. For any f : A → B, ζ : 1 → 1, we then find

ζ · f = λB ◦ (id1 ⊗ (ζ · f)) ◦ λ−1
A

= λB ◦ ((id1 · ζ)⊗ f) ◦ λ−1
A

= λB ◦ ((id1 ⊗ f) · ζ) ◦ λ−1
A

= (λB ◦ (id1 ⊗ f) ◦ λ−1
A ) · ζ

= f · ζ

. (4.15)

7. This is trivial from all of the above.

■

4.2 Multiring and ring categories

First, we introduce categories equipped with both a monoidal and an abelian structure, which we require
to be compatible in a suitable sense. It is clear what this compatibility should entail: the monoidal product
⊗ : C×C → C becomes a functor between two abelian categories, and should be a morphism in the category
of abelian categories, or thus an exact functor. This means that:

1. the monoidal product ⊗ is bilinear on morphisms, i.e. (f1 + f2) ⊗ (g1 + g2) = f1 ⊗ g1 + f1 ⊗ g2 +
f2 ⊗ g1 + f2 ⊗ g2,

2. the monoidal product ⊗ is biexact, i.e. exact in both arguments1.

Bilinearity of the monoidal product has the following important corollary.
1Actually, exactness of the bifunctor would just mean that ⊗ maps short exact sequences in C × C to short exact sequences in C.

However, the non-zero part of short exact sequences in C × C can be written as the composition of a short exact sequence in the
first argument (with an identity morphism in the second), and a short exact sequence in the second argument (with an identity
morphism in the first). Functoriality of the monoidal product then shows that it is enough to have exactness in both arguments to
obtain exactness on C × C.
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Proposition 4.2.1. Let C be an additive monoidal category such that the monoidal product is bilinear on
morphisms, and let A,B,X, Y ∈ Ob (C). We have

(A⊕B)⊗ (X ⊕ Y ) = (A⊗X)⊕ (A⊗ Y )⊕ (B ⊗X)⊕ (B ⊗ Y ) (4.16)

with incU⊗V = incU ⊗ incV and projU⊗V = projU ⊗ projV for U = A,B and V = X,Y .

Proof. This follows from the functoriality and linearity of the monoidal product. For example: (projA ⊗ projX)◦
(incA ⊗ incX) = (projA ◦ incA)⊗ (projX ◦ incX) = idA ⊗ idX = idA⊗X through functoriality, and∑
U=A,B
V=X,Y

(incU ⊗ incV ) ◦ (projU ⊗ projV ) = (incA ◦ projA + incB ◦ projB)⊗ (incX ◦ projX + incY ◦ projY )

= idA⊕B ⊗ idX⊕Y

= id(A⊕B)⊗(X⊕Y )

.

(4.17)
■

Corollary 4.2.2. Let C be an additive monoidal category equipped with a braiding γ, such that the monoidal
product is bilinear on morphisms. For any A,B,X, Y ∈ Ob (C), we have

γ(A⊕B,X⊕Y ) =
∑

U=A,B
V=X,Y

incV⊗U ◦γ(U,V ) ◦ projU⊗V . (4.18)

Proof. We have

γ(A⊕B,X⊕Y ) = γ(A⊕B,X⊕Y ) ◦ (incA ◦ projA + incB ◦ projB)⊗ (incX ◦ projX + incY ◦ projY )

= γ(A⊕B,X⊕Y ) ◦

 ∑
U=A,B
V=X,Y

(incU ⊗ incV ) ◦ (projU ⊗ projV )


=

∑
U=A,B
V=X,Y

incV⊗U ◦γ(U,V ) ◦ projU⊗V

. (4.19)

■

Proposition 4.1.1 and Proposition 4.1.2 now show that the category is enriched over the commutative ring
R = HomC(1,1). If we want the category to behave in a reasonable and manageable way (for example,
think of Example 30), we additionally want the hom-spaces to be finitely generated and projective over this
ring. If the category is enriched over a field, for example when the monoidal unit is simple, this leads to the
following notion of locally finite categories.

Definition 4.2.3 (Locally finite categories, [EGNO15, Definition 1.8.1]). Let C be a K-linear abelian
category for some field K. It is called locally finite if

1. every object is of finite length,

2. all the hom-spaces are finite-dimensional (i.e. C is FinVectK-enriched).

Definition 4.2.4 (Multiring and ring categories, [EGNO15, Definition 4.2.3]). Let K be a field. A
locally finite K-linear abelian monoidal category is called a multiring category if the monoidal product is
bilinear and biexact. If, in addition, the monoidal unit 1 is such that HomC(1,1) ∼= K as algebras, then it is
called a ring category.
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4.3 Multitensor and tensor categories

4.3.1 Introducing duals into the mix

Second, we want to introduce duals into the mix. Compatibility then asks the dualisation functors to be exact.
If the category is equipped with both left and right duals, Remark 3.4.9 shows that the dualisation functors
are exact. However, we will now show that we don’t need both left and right duals; having just one kind of
dual is enough.

Proposition 4.3.1 ([EGNO15, Proposition 4.2.9]). Let C be a left (resp. right) rigid monoidal and abelian
category such that the monoidal product is bilinear and biexact. The left (resp. right) dualisation functor is exact.

Proof. Let 0 → A
f→ B

g→ C → 0 be a short exact sequence. We will use the fact that the hom-functors
HomC(X,−) and HomC(−, X) reflect left exact sequences (Proposition 1.2.4). This implies that

0 C∗ B∗ A∗g∗ f∗

and

C∗ B∗ A∗ 0
g∗ f∗

(4.20)

are exact if and only if

0 HomC(X,C∗) HomC(X,B∗) HomC(X,A∗)
g∗◦− f∗◦− and

0 HomC(A
∗, X) HomC(B

∗, X) HomC(C
∗, X)

−◦f∗ −◦g∗
(4.21)

are exact.

We will only prove the first of these statements. We can rewrite the sequence as

0 HomC(X ⊗ C,1) HomC(X ⊗B,1) HomC(X ⊗A,1)
−◦(idX⊗g) −◦(idX⊗f)

. (4.22)

This sequence is exact because we are applying a left exact contravariant functor (the second argument of
the monoidal product) to a right exact sequence2. ■

A second noteworthy result in this setting is that the monoidal product of any object with a projective object
is again projective.

Proposition 4.3.2 ([EGNO15, Proposition 4.2.12]). Let C be a monoidal and abelian category such that the
monoidal product is bilinear and right (resp. left) exact in the first (resp. second) argument, and let A ∈ Ob (C)
be projective. If an object X ∈ Ob (C) has a left (resp. right) dual X∗, then the object A⊗X (resp. X ⊗ A) is
projective.

Proof. We want to show that HomC(A⊗X,−) is right exact, or equivalently (through Proposition 3.4.5)
that HomC(A,−⊗X∗) is right exact. We know that −⊗X∗ and HomC(A,−) are right exact, which shows
that their composition HomC(A,−⊗X∗) is right exact too. ■

Remarkably, biexactness of the monoidal product follows from bilinearity if we require our categories to be
rigid.

Proposition 4.3.3. Let C be an abelian rigid (resp. left rigid, right rigid) monoidal category with a bilinear
monoidal product. The monoidal product is then biexact (resp. right, left exact in the first argument, and left,
right exact in the second argument).

Proof. Proposition 3.4.5 shows that we have adjoint pairs (A∗ ⊗−, A⊗−), (A⊗−, ∗A⊗−), (−⊗A,−⊗
A∗), (−⊗ ∗A,−⊗A). Theorem 1.4.3 then implies the result. ■

2Note that it is not sufficient to ask only for left or right duals, without the additional biexactness condition on the monoidal product.
Indeed, we would then find that X ⊗− is left, right exact but not necessarily right, left exact.
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4.3.2 Properties of the monoidal unit

Corollary 4.3.4 ([EGNO15, Corollary 4.2.13]). Let C be a left (resp. right) rigid monoidal and abelian
category such that the monoidal product is bilinear. The monoidal unit is projective if and only if the category is
semisimple.

Proof. Suppose that1 is projective, then any objectX ∼= 1⊗X is projective due to the above Proposition 4.3.2
and Proposition 4.3.3. Proposition 2.3.9 then implies that C is semisimple. ■

Remark 4.3.5. The above Corollary 4.3.4 is a generalisation of Maschke’s theorem, as explained in [EGNO15,
Remark 4.2.14].

We will now show that the monoidal unit, although not projective, behaves nicely.

Proposition 4.3.6 ([DM82, Proposition 1.17]). Let C be a left (resp. right) rigid monoidal and abelian
category such that the monoidal product is bilinear and biexact. If HomC(1,1) is a field, then the monoidal unit
is simple.

Proof. Let (A, f) be any subobject of 1 (we assume that 1 ≁= 0). We extend this monomorphism f : A → 1

to a short exact sequence
0 A 1 B 0

f g
. (4.23)

As − ⊗ A is exact, and the right unitor is a natural isomorphism (3.3), we find the following commutative
diagram with exact rows

0 A⊗A 1⊗A B ⊗A 0

0 A⊗ 1 1⊗ 1 B ⊗ 1 0

0 A 1 B 0

idA⊗f

f⊗idA

id1⊗f

g⊗idA

idB⊗f

f⊗id1

ρA

g⊗id1

ρ1 ρB

f g

. (4.24)

As g ◦ f = 0, and ρB ◦ (idB ⊗ f) is a monomorphism (because B ⊗− is exact), we find that g ⊗ idA = 0,
hence that B⊗A ∼= 0 because g⊗ idA is an epimorphism. This then implies that ρA◦(f⊗ idA) : A⊗A → A
is an isomorphism.

As the left dualisation functor is exact (Proposition 4.3.1), we know that

(Ker(f∗), ker(f∗)) = (B∗, g∗). (4.25)

As B ⊗− is exact too, we find that

(Ker(idB ⊗ f∗), ker(idB ⊗ f∗)) = (B ⊗B∗, idB ⊗ g∗). (4.26)

Because HomC(B ⊗A,B) ∼= HomC(B,B ⊗A∗) (Proposition 3.4.5), we find that B ⊗ A = 0 implies that
idB ⊗ f∗ = 0. This then implies that (Ker(idB ⊗ f∗), ker(idB ⊗ f∗)) ∼= (B, idB). The unique isomorphism
between these kernels is ρB ◦ (idB ⊗ g∗) : B ⊗B∗ → B.

The fact that idB⊗g∗ is an isomorphism then implies that B⊗A∗ = Coker(idB⊗g∗) ∼= 0. As the monoidal
product is bilinear, this implies that A⊗B∗ ∼= 0.

−⊗B∗ is exact, which implies that we also have the short exact sequence

0 A⊗B∗ 1⊗B∗ B ⊗B∗ 0
f⊗idB∗ g⊗idB∗

. (4.27)

The facts that A⊗B∗ ∼= 0 and that ρB ◦ (idB ⊗ g∗) : B ⊗B∗ → B is an isomorphism then imply that we
obtain an isomorphism

0 B∗ B 0
ρB◦(g⊗g∗)◦λ−1

B∗=g◦g∗

. (4.28)
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We conclude that there is a short exact sequence

0 A 1 B∗ 0
f (g◦g∗)−1◦g

. (4.29)

This short exact sequence is split as (g ◦ g∗)−1 ◦ g : 1 → B∗ has the right inverse g∗. We conclude that

1 = A⊕B∗. (4.30)

This implies that the endomorphism ring HomC(1,1) decomposes as a direct sum

HomC(1,1) ∼= HomC(A,A)⊕HomC(A,B∗)⊕HomC(B
∗, A)⊕HomC(B

∗, B∗) , (4.31)

and if A ̸∼= 0 and B∗ ̸∼= 0, then this is at least two dimensional as a vector space over HomC(1,1). We
conclude that HomC(1,1) can only be a field if A ∼= 0 or B ∼= 0, which implies that f is either zero or an
isomorphism. This implies that 1 is simple. ■

Remark 4.3.7. The above proposition is the converse to Proposition 4.1.1.

The above proposition allows us to prove a statement that is clearly true for finitely generated projective
modules: the evaluation is an epimorphism and the coevaluation is a monomorphism.

Corollary 4.3.8 ([EGNO15, Corollary 4.3.9]). Let C be a left (resp. right) rigid monoidal and abelian
category such that the monoidal product is bilinear and biexact. If HomC(1,1) is a field, then all evaluation
morphisms are epimorphisms and all coevaluation morphisms are monomorphisms.

Proof. This follows from Lemma 2.2.10 and Proposition 4.3.6. ■

Corollary 4.3.9 ([DM82, Proposition 1.19] and [EGNO15, Remark 4.3.10]). Let C,D be left (resp. right)
rigid monoidal and abelian categories such that the monoidal product is bilinear and biexact. If HomC(1C ,1C)
is a field, then any exact monoidal functor C → D is faithful (if D contains a non-zero object).

Proof. Suppose that A ∈ Ob (C) is not a null object. F is exact, which implies that F maps the monomor-
phism coevA (due to Corollary 4.3.8) to a monomorphism. As F is monoidal, we also have F (1C) ∼= 1D .
This implies that we have a monomorphism from a non-zero object to F (A), hence that F (A) is not a null
object.

Let f be any morphism in C, and suppose that f ̸= 0, which implies that Im(f) is not a null object. Applying
the above to Im(f) implies that F (Im(f)) is not a null object, or thus that F (f) ̸= 0. ■

4.3.3 Tensor categories

When introducing duals to multiring categories, Proposition 4.3.3 shows that we can ignore the biexactness
condition for the monoidal product. This leads to the following natural definition of categories mixing an
abelian structure, and a monoidal structure with duals.

Definition 4.3.10 (Multitensor and tensor categories, [EGNO15, Definition 4.1.1]). Let K be a field. A
K-linear abelian rigid monoidal category is called a multitensor category if the monoidal product is bilinear
on morphisms. If, in addition, the monoidal unit 1 is such that HomC(1,1) ∼= K as algebras, then it is called
a tensor category.

Remark 4.3.11. We did not assume our tensor categories to be locally finite. This is because we are following
[DM82; Del02; Del90] here. It should be noted that [EGNO15, Definition 4.1.1] defines tensor categories to
be locally finite. It can be shown that in a tensor category in which all objects have finite length, all hom-
spaces are automatically finite-dimensional (see [Del02, Proposition 1.1]). It is thus sufficient to assume that
all objects have finite length to obtain locally finite categories.

Definition 4.3.12 (Tensor subcategories, [EGNO15, Definition 4.11.1]). Let C be a multitensor category.
A full subcategory D of C is called a tensor subcategory if it contains the monoidal unit and is closed under
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1. (finite) direct sums,

2. subquotients (i.e. quotients of subobjects),

3. monoidal products,

4. duals.

We say that a tensor subcategory D ⊆ C is finitely generated if it is generated by a single object A ∈ Ob (C),
i.e. if every object can be obtained from A by iterating direct sums, tensor products, dualisation, and taking
subquotients.

Finally, the appropriate notion of structure-preserving functors between (multi)tensor categories (and also
multiring categories) is that of exact monoidal functors.

Definition 4.3.13 (Tensor functors, [EGNO15, Definition 4.2.5]). Let C,D be two multitensor cate-
gories. A tensor functor is an exact monoidal functor C → D.

Example 39. Let K be a field, the category of finite-dimensional K-vector spaces FinVectK is a tensor
category.

Example 40. Let G be a group and let K be a field. The category of finite-dimensional K-linear G-
representations FinRepK(G) is abelian (Example 19) and rigid monoidal (Examples 25 and 32). Further-
more, it is locally finite and K-linear, and is such that tensor product is bilinear on morphisms. This implies
that it is a multitensor category. As the monoidal unit (K, g 7→ idK) has a one-dimensional hom-space
(which is inherited from FinVectK), we conclude that it is a tensor category.

4.4 Multifusion and fusion categories

Given the complexity of multitensor categories in general, it is natural to introduce a particularly simple
subclass characterised by involving only finitely many pieces of data3.

Definition 4.4.1 (Multifusion and fusion categories, [EGNO15, Definition 4.1.1]). A multitensor cat-
egory is called a multifusion category if it has a finite amount of simple objects and it is semisimple. If the
underlying multitensor category is actually a tensor category, then we call it a fusion category.

Note that a tensor subcategory D of a (multi)fusion category C, also called a fusion subcategory, is a full
subcategory containing the monoidal unit, closed under duals, monoidal products, and finite direct sums,
and is such that every simple object appearing in a decomposition of an object of D is also contained in D.

4.5 Symmetric tensor categories and a look at the literature

4.5.1 Introducing braidings into the mix

In what follows we will often be interested in symmetric tensor categories, i.e. tensor categories that are
equipped with a symmetric braiding. There are a few reasons for this:

1. Theorem 3.6.11 and Corollary 3.6.12 imply that symmetric tensor categories are pivotal and spherical.
This implies that these categories are amenable to semisimplification via negligible morphisms, as will
be discussed in Chapter 5.

2. Symmetric tensor categories provide a natural setting for many familiar constructions in algebra; we
will return to this shortly and explore it further in Chapter 6.

3. Symmetric tensor categories are relatively well understood. This will also be discussed shortly.
3This can be taken quite literally: by using skeletal data, multifusion categories can be encoded using only a finite amount of scalars,

as discussed in my literature study [Sle24].
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Remark 4.5.1. For many algebraic objects in locally finite symmetric tensor categories C, one is often in-
terested in both objects in C (the “finite-dimensional” objects) and objects in Cind (the “possibly infinite-
dimensional” objects). It is therefore important to note that the ind-cocompletion of a symmetric tensor cat-
egory is itself a symmetric tensor category: all constructions and properties of symmetric tensor categories
extend through filtered colimits. In particular, since the monoidal product preserves colimits, it naturally
extends to the ind-cocompletion.

The correct notion of structure-preserving functors for braided tensor categories is just the combination of
a braided monoidal functor with a tensor functor.

Definition 4.5.2 (Braided tensor functor, [EGNO15, Definition 8.1.7]). Let C,D be braided multitensor
categories. An exact braided monoidal functor is called a braided tensor functor. If the braiding is symmetric,
then a braided tensor functor is called a symmetric tensor functor.

4.5.2 Symmetric and exterior powers of objects

Theorem 3.6.14 shows that there is a natural action of Sn on any n-fold tensor product of an object in a
symmetric multitensor category.

Interestingly, this action allows us to show that dimensions of objects in symmetric tensor categories are
well-behaved.

Proposition 4.5.3 ([EGNO15, Exercise 9.9.9 (ii)]). Let C be a symmetric tensor category, and let A ∈
Ob (C). If HomC(1,1) is a field of positive characteristic p > 0, then

dim(A) ∈ Fp. (4.32)

Proof. Let σ : A⊗p → A⊗p be the cyclic permutation used in Proposition 3.6.16, and define a := idA⊗p − σ.
Note that ap = 0, which implies that tr(a) = 0 (through a result we will prove later, Corollary 5.4.3).

However, we also have

tr(idA⊗p − σ) = tr(idA⊗p)− tr(σ) = dim(A)p − dim(A). (4.33)

This implies that dim(A) is a fixpoint of the Frobenius endomorphism on HomC(1,1), hence that dim(A) ∈
Fp. ■

The action of the symmetric group also allows us to define symmetric and exterior powers.

Definition 4.5.4 (Symmetric and exterior powers, [EGNO15, Definition 9.9.5]). Let C be a symmetric
tensor category, let A ∈ Ob (C), and let n ∈ N.

1. The nth symmetric power of A, denoted Sn(A) or SnA, is the maximal quotient of A⊗n on which the
action of Sn is trivial.

2. The nth exterior power of A, denoted ∧n(A) or ∧nA, is the maximal quotient of A⊗n on which the
action of Sn factors through the sign representation.

This means that (Sn(A), sn(A) : A⊗n → Sn(A)) is the colimit of the (finite) diagram (σ : A⊗n →
A⊗n)σ∈Sn

, and that (∧n(A), an(A) : A⊗n → ∧n(A)) is the colimit of the (finite) diagram (sgn(σ)σ :
A⊗n → A⊗n)σ∈Sn

(i.e. a coequaliser of all these morphisms at the same time). Note that these colimits exist
as C is abelian, hence finitely cocomplete.

Proposition 4.5.5. Let C be a symmetric tensor category, and let A ∈ Ob (C). Let n be smaller than the
characteristic of K = HomC(1,1), or any natural number if the characteristic is zero. We define the sym-
metriser sn : A⊗n → A⊗n and skew-symmetriser an : A⊗n → A⊗n as the action of 1

n!

∑
σ∈Sn

σ and
1
n!

∑
σ∈Sn

sgn(σ)σ (in the group algebra KSn) on A⊗n through Theorem 3.6.14.

We have (Sn(A), sn(A)) = (Coim(sn), coim(sn)) and (∧n(A), an(A)) = (Coim(an), coim(an)).
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Proof. As sn ◦ σ = sn and an ◦ σ = an for any σ ∈ Sn, we find that there are unique morphisms f :
Sn(A) → Coim(sn) and g : ∧n(A) → Coim(an) such that f ◦ sn(A) = sn and g ◦ an(A) = an.

We also have sn(A) = sn(A) ◦ sn and an(A) = an(A) ◦ an, which shows that sn(A) = sn(A) ◦ sn
and an(A) = an(A) ◦ an. This implies that there exist unique morphisms f : Coim(sn) → Sn(A) and
g : Coim(an) → ∧n(A) such that sn(A) = f ◦ coim(sn) and an(A) = g ◦ coim(an). Through the colimit
properties, we then see that f and g are inverses to f and g respectively. ■

Corollary 4.5.6. Let C be a symmetric tensor category over a field that is not of characteristic two, and let
A ∈ Ob (C). Let s2 = 1

2 (idA⊗A + γ(A,A)) and a2 = 1
2 (idA⊗A − γ(A,A)) be the symmetriser and skew-

symmetriser on A⊗A introduced above. The following sequences are split short exact

0 ∧2A A⊗A S2A 0

0 S2A A⊗A ∧2A 0

im(a2) coim(s2)

im(s2) coim(a2)

. (4.34)

As a corollary, we find
A⊗A = S2A⊕ ∧2A. (4.35)

Proof. Note first that a2 ◦ s2 = 0.

Suppose that a2 ◦ k = 0 for any morphism k. We then find k = γ(A,A) ◦ k, which shows that s2 ◦ k = k.
Through the definition of S2A and Proposition 4.5.5, this shows that there is a unique morphism k such that
im(s2) ◦ k = k. This implies that im(s2) = ker(a2) = ker(coim(a2)). Furthermore, s2 ◦ s2 = s2, hence
coim(s2) ◦ im(s2) = idS2A. This implies that im(s2) is split. ■

More generally than the previous statement, we have the following.

Lemma 4.5.7. Let C be a symmetric tensor category, and let A ∈ Ob (C). Let n be smaller than the character-
istic of K = HomC(1,1), or any natural number if the characteristic is zero. Let sn and an be the symmetriser
and skew-symmetriser introduced in the above Proposition 4.5.5. We have

coim(sn) ◦ im(sn) = idSnA and coim(an) ◦ im(an) = id∧nA. (4.36)

In particular; im(sn) and im(an) are split monomorphisms, and coim(sn) and coim(an) are split epimorphisms.

Proof. We have sn ◦ sn = sn and an ◦ an = an. This implies that im(sn) ◦ coim(sn) ◦ im(sn) ◦ coim(sn) =
im(sn) ◦ coim(sn), hence that coim(sn) ◦ im(sn) = idSnA. Similarly, we show that coim(an) ◦ im(an) =
id∧nA. ■

Proposition 4.5.8 ([EGNO15, Exercise 9.9.9 (i)]). Let C be a symmetric tensor category, let n ≥ 1, and let
A ∈ Ob (C). We have (whenever this makes sense)

dim(SnA) =

(
dimA+ n− 1

n

)
and dim(∧nA) =

(
dimA

n

)
. (4.37)

Proof. We claim that dim(SnA) = tr(sn) and dim(∧nA) = tr(an), where sn and an are the symmetriser
and skew-symmetriser introduced in the above Proposition 4.5.5.

We have coim(sn) ◦ im(sn) = idSnA and coim(an) ◦ im(an) = id∧nA through Lemma 4.5.7. Lemma 3.5.8
then shows that dim(SnA) = trSnA(idSnA) = trSnA(coim(sn) ◦ im(sn)) = trA⊗n(im(sn) ◦ coim(sn)) =
trA⊗n(sn), and similarly dim(∧nA) = trA⊗n(an).

Using Corollary 3.6.17, we then find dim(SnA) = p(dim(A)) and dim(∧nA) = q(dim(A)) for some known
polynomials p, q. As these are the same polynomials one obtains in FinVectHomC(1,1), and we know the
dimensions of symmetric and exterior powers in this category4, we conclude the result. ■

4In positive characteristic p > 0, we have to consider the result modulo p.
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4.5.3 The classification of pre-Tannakian symmetric tensor categories

Symmetric tensor categories provide the natural (and minimal) framework in which to carry out commutative
algebra, algebraic geometry, representation theory, and so on. Indeed, we will see later that they are the
appropriate setting for defining and studying commutative algebras and related structures. Although our
primary interest in this text lies in non-associative algebras, we will nevertheless work within symmetric
tensor categories, as their structure allows us to extract meaningful results (about their structure) even in
the non-associative setting. For instance, Lie algebras inherently require a symmetric (or at least braided)
tensor structure, and without such structure, general non-associative algebras tend to be hard to describe.

For this reason, and because symmetric tensor categories are considered inherently interesting, there has
been an effort to classify symmetric tensor categories (over algebraically closed fields) over the past few
decades. This programme was initiated by Pierre Deligne, and has since been developed further by re-
searchers such as Victor Ostrik, Pavel Etingof, Kevin Coulembier, among others5.

General symmetric tensor categories seem impossible to classify, and for this reason (among others) attention
is typically restricted to those symmetric tensor categories in which all objects have finite length.

Definition 4.5.9 (Pre-Tannakian categories, [Del90, § 2.1] and [CEO24b, § 2.2.1]). A pre-Tannakian
category is a symmetric tensor category in which all objects have finite length.

In the course of classifying pre-Tannakian symmetric tensor categories, the notion of categories with favourable
polynomial noetherian and artinian properties has emerged as an important organising principle.

Definition 4.5.10 (Pre-Tannakian categories of moderate growth, [CEO24b, § 2.2.1]). A pre-Tannakian
category C is called of moderate or subexponential growth if, for every object A ∈ Ob (C), there exists an in-
teger NA ≥ 0 such that

len(A⊗n) ≤ Nn
A for all n ≥ 0. (4.38)

We thus have (following [CEO24b, § 1.3]) three interesting (2-)categories of symmetric tensor categories

1. the category of all symmetric tensor categories, SymTensK,

2. the category of all pre-Tannakian symmetric tensor categories, PTannK,

3. the category of all pre-Tannakian symmetric tensor categories of moderate growth, MdGrK.

We have the inclusions MdGrK ⊂ PTannK ⊂ TensK. Positive and negative classification results usually
describe the structure of (one of) these categories.

Tannakian reconstruction

The following theorem shows that symmetric tensor functors between pre-Tannakian categories are quite
special. In Corollary 4.3.9 we already showed that they have to be faithful, and the following theorem will
show that they allow to reconstruct the domain category as representations in the target category.

Theorem 4.5.11 ([Del90, Théorème 8.17]). Let C,D be pre-Tannakian categories (where D contains at least
one non-zero object), and let F : C → D be a symmetric tensor functor. Then there exists an affine group scheme
G in D (a concept we will formally define in Chapter 6) such that the category of representations of G in D is
equivalent to C, i.e.

C ≃ RepD(G). (4.39)

As a corollary, we observe that if a (2-)category of pre-Tannakian categories admits a weakly final object (i.e.
an object to which every other object admits a morphism), then every object in this category is equivalent,
as a symmetric tensor category, to the category of representations of some affine group scheme internal to
the final category. The classification theorems discussed below can be interpreted as identifying such final
objects in suitable (2-)categories of pre-Tannakian categories.

5The four names mentioned here are arguably among the most influential contributors. I would like to highlight, with some national
pride, that two of them (Pierre Deligne and Kevin Coulembier) are Belgian!
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Symmetric tensor categories of moderate growth

The classification of pre-Tannakian categories was started by Deligne in [Del02], with the following result.

Theorem 4.5.12 ([Del02, Proposition 0.5, Théorème 0.6]). Let C be a pre-Tannakian category over an alge-
braically closed field of characteristic zeroK. There exists a symmetric tensor functor (unique up to isomorphism),
called a fibre functor, to the category of finite-dimensional supervector spaces

C → FinsVectK. (4.40)

Equivalently, there is an affine supergroup scheme G such that

C ≃ RepG. (4.41)

Generalising the above result 4.5.12 to fields K of positive characteristic p > 0 turned out to be very dif-
ficult. It was found that there exists a symmetric fusion category that does not admit a fibre functor to
FinsVectK, the (universal) Verlinde category Verp ([GK92; GM94; Ost20]), which contains FinsVectK as a
fusion subcategory. This Verlinde category will be the subject of chapters 7 and 8.

More than a decade after Deligne’s result, the following theorem by Ostrik brought marked a turning point
in the structure theory in positive characteristic.

Theorem 4.5.13 ([Ost20, Theorem 1.5, Corollary 1.6]). Let K be an algebraically closed field of character-
istic p > 0. Any symmetric fusion category C over K admits a symmetric tensor functor

C → Verp. (4.42)

Equivalently, there exists an affine algebraic group G in Verp such that

C ≃ RepVerp(G). (4.43)

Later it was proved by Coulembier, Etingof, Ostrik (in [CEOK23, Theorem 1.1, Theorem 7.13]) that a a pre-
Tannakian category admits a fibre functor to Verp if and only if it is of moderate growth and is Frobenius
exact (based on earlier work [Cou20; EO21b]).

It was then realised that this Verlinde category is not sufficient for the full structure theory, and higher
Verlinde categories Verpn were introduced ([BE19; BEO23; Cou21]), with Verp ⊆ Verp2 ⊆ Verp3 ⊆ . . .
After the construction of these categories, it was conjectured that they allow a generalisation of Deligne’s
result.

Conjecture 4.5.14 ([BEO23, Conjecture 1.4]). Every pre-Tannakian category C over an algebraically closed
field of characteristic p > 0 admits a symmetric tensor functor

C → Verp∞ . (4.44)

Equivalently, there is an affine group scheme G in Verp∞ such that

C ≃ RepVerp∞
(G). (4.45)

This remains a conjecture until this day. However, Coulembier, Etingof, Ostrik have since proved a classifi-
cation theorem that comes quite close.

Definition 4.5.15 (Injective tensor functors, [CEO24b, Lemma 3.1.1]). Let C,D be pre-Tannakian cat-
egories. A symmetric tensor functor F : C → D is called injective if it is an equivalence between C and a
(full) tensor subcategory of D.

Remark 4.5.16. One can prove that for a symmetric tensor functor between pre-Tannakian categories, the
following statements are equivalent ([CEO24b, Lemma 3.1.1])
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1. F is injective,

2. F is fully faithful and sends simple objects to simple objects,

3. F is fully faithful and for every A ∈ Ob (C), every subobject of F (A) is of the form F (B) for some
subobject B of A.

Definition 4.5.17 (Incompressible categories, [“cite [Definition˜3.2.1]–CEO24Incompressible˝]). A
pre-Tannakian category is called incompressible if every braided tensor functor to any pre-Tannakian cate-
gory is injective (i.e., every braided tensor functor out of this category is an embedding).

Theorem 4.5.18 ([CEO24b, Theorem 5.2.1]). Every pre-Tannakian category of moderate growth, over an
algebraically closed field of any characteristic, admits a symmetric tensor functor to some incompressible cat-
egory of moderate growth. Equivalently, every pre-Tannakian category of moderate growth is equivalent to a
representation category of some affine group scheme in an incompressible category of moderate growth.

Deligne’s result 4.5.12 can then be captured in the following theorem.

Theorem 4.5.19. Let K be an algebraically closed field of characteristic zero. The only incompressible cate-
gories of moderate growth are the category of finite-dimensional super-vector spaces, and the category of finite-
dimensional vector spaces.

Conjecture 4.5.14 then becomes.

Conjecture 4.5.20 ([BEO23, Conjecture 1.4] and [CEO24b, Conjecture B]). Let K be an algebraically
closed field of characteristic p > 0. Every incompressible category of moderate growth over K is a tensor subcat-
egory of Verp∞ .

A generalisation of the result for Frobenius exact categories is still a conjecture, even for incompressible
categories.

Conjecture 4.5.21 ([CEO24b, Conjecture C]). A pre-Tannakian category over an algebraically closed field
admits a symmetric tensor functor to an incompressible category if and only if it is of moderate growth.

Symmetric tensor categories of non-moderate growth

We have now seen that pre-Tannakian categories of subexponential (i.e. moderate) growth can be classified
as representation categories of affine group schemes. The following result shows that, even in characteris-
tic zero, things go wrong when trying to give a classification theorem that is similar to the ones we have
mentioned above for categories of non-moderate growth.

Theorem 4.5.22 ([CEO24b, Proposition 5.1.1]). Let K be an algebraically closed field of characteristic zero.
Neither the category of all symmetric tensor categories (in which objects are allowed to have non-finite length)
nor the category of all pre-Tannakian categories have a final object. As a consequence, there cannot exist one
category D such that every pre-Tannakian or symmetric tensor category C is equivalent to a representation
category of an affine group scheme over D.

So, something seems to go wrong for pre-Tannakian categories of superexponential (i.e. non-moderate)
growth. For these categories, it is hard to even construct examples. In characteristic zero, Deligne and Milne
constructed such categories ([DM82; Del07]).

Not a lot is known about these categories, but Andrew Snowden (among others) is doing some pioneering
research in this direction using oligomorphic groups (see, for example, [HS22; HNS23; Sno23; Sno24]).
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5 Semisimplification

In this chapter, we introduce the main tool currently used to construct non-associative algebras in certain
exotic symmetric tensor categories (see [Kan24; EEK25]): semisimplification. Our treatment of semisimplifi-
cation will be quite general (more general than what I have seen in the existing literature). In particular, we
will not restrict ourselves to symmetric or even pivotal tensor categories. As a result, our discussion applies
to all braided tensor categories, including those that are neither symmetric nor balanced.

The guiding idea is simple: tensor categories can be viewed as categorified analogues of local rings, and
semisimplification corresponds to forming the quotient by the maximal proper ideal. For braided tensor
categories, this quotient corresponds to a categorification of the residue field of a commutative local ring.

Although the notion of semisimplification is not formally defined, outside the specific contexts we will en-
counter in this chapter, we attempt below to outline a very general procedure for semisimplification using
some definitions that are not fully formal.

Definition 5.0.1 (Categorical ideals). Let Struct be a (2-)category whose objects are categories enriched
over some monoidal category M, and which is equipped with a collection BinOp of binary operations de-
fined on all morphisms (including, for example, the composition). Let C ∈ Ob (Struct) be such a structured
category. An ideal I ≤ C is a collection of subobjects I(A,B) ⊆ HomC(A,B) (in M) for all A,B ∈ Ob (C),
such that

o(f, g), o(g, f) ∈ I for all f ∈ I, g ∈ Hom(C), and o ∈ BinOp. (5.1)

Generally (when M has a notion of quotients, e.g. when it is abelian), such ideals give rise to quotients of
categories C/I ∈ Ob

(
Struct′

)
, where Struct ⊆ Struct′ is some larger category. Such a quotient comes

equipped with a canonical quotient functor, quotI : C → C/I ∈ Hom(Struct′).

We will see in Section 5.2.1 that this is a natural definition.

Definition 5.0.2 (Semisimplification). Let Struct,Struct′ be as in the above, and suppose further that
Struct′ is contained in the category of additive categories. Let C ∈ Ob (Struct). If rad(C) ≤ C is a minimal
ideal among those I ≤ C for which C/I is semisimple and Schur, or equivalently semisimple and abelian (in
the sense that every such I contains rad(C)), then the quotient C/rad(C) is called the semisimplification of
C.

Many of the results and ideas presented in this chapter are adapted from or inspired by [AKO02; EO21a].

5.1 Indecomposable and simple objects in abelian categories

Before discussing semisimplification in the settings of abelian and tensor categories, we begin with a more
detailed study of indecomposable objects and their endomorphism rings in abelian categories. The motiva-
tion for this lies in our interest in ideals of morphisms in such categories. Indecomposable objects serve as
the building blocks of abelian categories, and every morphism (in categories that admit decompositions into
indecomposables) decomposes as a sum of morphisms between indecomposable objects. Consequently, un-
derstanding the structure of morphisms between indecomposables is an important step for gaining insight
into the behaviour of general morphisms and ideals.

This section focuses specifically on endomorphisms of indecomposable objects. We will show that every such
morphism is either an isomorphism or nilpotent. Furthermore, we will demonstrate that indecomposable
objects can be recognised by their endomorphism rings.

This discussion is inspired by a similar treatment in the setting of modules found in [Ben84].
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5.1.1 Some ring theory

In this small section, we review some background on local rings that will be used in this chapter.

We assume our rings to be unital, but not necessarily commutative.

Definition 5.1.1 (Jacobson radical). Let R be a ring. We define the Jacobson radical as

rad(R) := {x ∈ R | (∀r ∈ R)(1R − r · x has a right inverse)}. (5.2)

It is not very hard to show that this is an ideal in R.

1. Let x ∈ rad(R), and let r, y ∈ R. Then 1R − r · y · x has some right inverse, which shows that
y · x ∈ rad(R). This shows that rad(R) is closed under left multiplication.

2. Let x, y ∈ rad(R), and let r ∈ R. We know that 1R − r · x has some right inverse z, and we then find
1R−r · (x+y) = 1R−r ·x−r ·y = (1R−r ·x) · (1R−z ·r ·y). As both terms have right inverses, we
find that x + y ∈ rad(R). It is also clear that rad(R) is closed under taking additive inverses, which
shows that rad(R) is a subgroup of (R,+).

3. Let x ∈ rad(R), and let r, y ∈ R. We know that 1R − y · r · x has some right inverse z, which implies
that (1R − r · x · y) · (1R + r · x · z · y) = 1R − r · x · y+ r · x · (1R − y · r · x) · z · y = 1R. This shows
that rad(R) is closed under right multiplication.

We could have equivalently defined the Jacobson radical as

rad(R) = {x ∈ R | (∀r ∈ R)(1R − r · x is invertible)}. (5.3)

For x ∈ rad(R) and r ∈ R, we know that 1R − r · x has a right inverse y. We thus find y = 1R + r · x · y,
which again has a right inverse z through (3). Now, z = 1R · z = (1R − r · x) · y · z = 1R − r · x, which
shows that 1R − r · x is invertible with inverse y.

Similarly, we can prove an equality of ideals

{x ∈ R | (∀r ∈ R)(1R − x · r has a left inverse)} = {x ∈ R | (∀r ∈ R)(1R − x · r is invertible)}. (5.4)

Finally, we have

{x ∈ R | (∀r ∈ R)(1R − x · r is invertible)} = {x ∈ R | (∀r ∈ R)(1R − r · x is invertible)}. (5.5)

This follows from the fact that both these sets are now known to be ideals in R, which implies that they
coincide with {x ∈ R | (∀r, s ∈ R)(1R − r · x · s is invertible)}.

We summarise with the following equivalent characterisations of the Jacobson radical

rad(R) = {x ∈ R | (∀r ∈ R)(1R − r · x has a right inverse)} (5.6)
= {x ∈ R | (∀r ∈ R)(1R − r · x is invertible)} (5.7)
= {x ∈ R | (∀r ∈ R)(1R − x · r has a left inverse)} (5.8)
= {x ∈ R | (∀r ∈ R)(1R − x · r is invertible)}. (5.9)

Proposition 5.1.2. Let R be a ring. The following properties are equivalent

1. R has a unique maximal proper left ideal, and it coincides with the Jacobson radical,

2. R has a unique maximal proper right ideal, and it coincides with the Jacobson radical,

3. the sum of any two non-invertible elements of R is once again non-invertible,

4. for all x ∈ R, either x or 1R − x is invertible.

If one of these properties is satisfied, then the Jacobson radical (and thus the unique maximal proper left or right
ideals) coincides with the set of non-invertible.
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Proof. It is immediately clear that (3) implies (4). This also shows that I = {x ∈ R | x is not invertible} is
an ideal of R. (3) shows that it is closed under addition, and (4) shows that it is closed under left and right
multiplication: suppose that x ∈ I, r ∈ R are such that r · x (resp. x · r) is invertible

1. if r is invertible, x = r−1 · r · x is a product of invertible elements, hence invertible,

2. if r is not invertible, then 1R − r is invertible, which means that r · x − x is not invertible by the
previous, and this then implies that r · x = r · x− x+ x is not invertible by (3).

It is clear that this ideal is the unique maximal proper left and right ideal, and that it coincides with the
Jacobson radical through (4). We conclude that (3) implies (1) and (2).

To show that (4) implies (3), suppose that x, y are non-invertible such that x+ y is invertible with inverse z.
As in the above, we find that x · z and y · z are not invertible. This implies that x · z = 1R− y · z is invertible,
which is a contradiction.

To show that (1) implies (4), suppose that there exists x such that both x and 1R − x are not invertible.

If x has a left inverse r, then (x ·r−1R) ·x = 0. This implies that x ·r−1R is contained in the proper left ideal
Ker(−·x). Because the Jacobson radical is the maximal proper left ideal, this implies that x·r−1R ∈ rad(R).
In particular, this implies that x · r is invertible, and thus that x has a right inverse. We conclude that x is
invertible. Similarly, we show that 1R − x has a left inverse if and only if it is invertible.

So, we may assume that the left ideals generated by x and 1R − x are proper. This implies that these ideals
are both contained in the unique maximal left ideal, and thus that x+1R−x = 1R is contained in this ideal.
This is clearly a contradiction.

The proof that (2) implies (4) is similar. ■

Definition 5.1.3 (Local rings). LetR be a ring. R is called local if it satisfies one of the equivalent conditions
in Proposition 5.1.2.

Proposition 5.1.4. Let R be a local ring, and let I ≤ R be an ideal in R. R/I is a local ring.

Proof. R has a unique maximal proper left ideal M . Let quot : R → R/I be the projection of R onto R/I .
Let N be any maximal proper left ideal in R/I . quot−1(N) is then a proper left ideal in R, and we thus
find quot−1(N) ⊆ M . Suppose now that quot−1(N) ̸= M . This implies that M/I = R/I , and thus that
M = R as this implies that 1R ∈ M . We conclude that N = quot(M), and thus that quot(M) is the unique
maximal proper left ideal in R/I . ■

5.1.2 Some technical results on endomorphisms under additive isomorphisms

In this chapter, we will require results showing that, in two distinct settings, any morphism between inde-
composable objects is either an isomorphism or nilpotent. With the benefit of hindsight, we have opted to
present a more general (if slightly more technical) treatment that captures both situations at once.

Definition 5.1.5 (Nilpotent morphisms in abelian categories equipped with an isomorphism). Let
C be an abelian category, and let F : C → C be an additive isomorphism, by which we mean that F is an
additive functor and there exists an inverse functor F−1 : C → C such that F ◦ F−1 = F−1 ◦ F = idC .

For any object A ∈ Ob (C), any morphism f : A → F (A), and any n ≥ 0, we define

f (n) := Fn−1(F ) ◦ Fn−2(f) ◦ · · · ◦ F (f) ◦ f : A → Fn(A). (5.10)

f is called nilpotent if there exists n ≥ 0 such that f (n) = 0.

Remark 5.1.6. An additive isomorphism F : C → C gives two adjoint pairs, (F, F−1) and (F−1, F ), which
shows that both F and F−1 preserve all limits and colimits. In particular, they are exact.
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The following lemma and its proof are adapted from the fitting lemma for modules [Ben84, Lemma 1.3.2],
generalised to our categorical setting. Although the proof is inspired by a relatively simple argument in the
setting of modules, its generalisation is not entirely straightforward.

Lemma 5.1.7. Let C be an abelian category equipped with an additive isomorphismF : C → C, letA ∈ Ob (C)
be an object of finite length in C (note that F (A) is then of the same length by applying F to a Jordan-Hölder
filtration), and let f : A → F (A) be a morphism. There exists N such that for all n ≥ N the short exact
sequences

0 Ker(f (n)) A Coim(f (n)) 0

0 Im(f (n)) Fn(A) Coker(f (n)) 0

ker(f(n)) coim(f(n))

im(f(n)) coker(f(n))

(5.11)

are split. This implies that

A = Ker(f (n))⊕ Coim(f (n)) and Fn(A) = Coker(f (n))⊕ Im(f (n)). (5.12)

Proof. Let n ≥ 0 be arbitrary. As F−n(f (2n)) = f (n) ◦ F−n(f (n)) and Fn(f (n)) ◦ f (n) = f (2n), we find

coker(F−n(f (2n))) ◦ (f (n) ◦ im(F−n(f (n)))) = 0 and coim(Fn(f (n))) ◦ f (n) ◦ ker(f (2n)) = 0. (5.13)

This implies that we have uniquely induced morphisms αn, βn such that the following diagram commutes

Coim(f (2n)) Coim(Fn(f (n)))

A Fn(A)

Im(F−n(f (n))) Im(F−n(f (2n)))

∃!βn

f(n)

coim(f(2n)) coim(Fn(f(n)))

im(F−n(f(n)))

∃!αn

im(F−n(f(2n)))

. (5.14)

We claim that αn is an epimorphism for all n, and that βn is a monomorphism for all n. For this, note that

F−n(f (2n)) = im(F−n(f (2n))) ◦ αn ◦ coim(F−n(f (n))), and (5.15)
Fn(f (n)) = im(Fn(f (n))) ◦ βn ◦ coim(f (2n)), (5.16)

which implies that αn◦coim(F−n(f (n))) = coim(F−n(f (2n))) is an epimorphism, and that im(Fn(f (n)))◦
βn = im(Fn(f (n))) is a monomorphism. This implies in turn that αn is an epimorpism, and that βn is a
monomorphism.

We claim that, in addition, αn is a monomorphism, and βn an epimorphism, for n large enough.

Let m ≥ n.

1. f (m) ◦ ker(f (n)) = 0 implies that there exists a unique morphism kn,m : Ker(f (n)) → Ker(f (m))
such that ker(f (m)) ◦ kn,m = ker(f (n)).

2. f (m) ◦ker(f (n)) = 0 also implies that coim(f (m)) ◦ker(f (n)) = 0, and thus that there exists a unique
morphism cn,m : Coim(f (n)) → Coim(f (m)) such that cn,m ◦ coim(f (n)) = coim(f (m)).

3. coker(f (n)) ◦ Fn−m(f (m)) = 0 implies that coker(f (n)) ◦ im(Fn−m(f (m))) = 0, and thus that
there exists a unique morphism in,m : Im(Fn−m(f (m))) → Im(f (n)) such that im(f (n)) ◦ in,m =
im(Fn−m(f (m))).

94



5 Semisimplification

As A is of finite length, we know that there exists N such that for all m ≥ n ≥ N , in,m, kn,m, cn,m are
isomorphisms. For such n, we then find

F−n(f (2n)) = im(F−n(f (2n))) ◦ coim(F−n(f (2n))), and (5.17)
F−n(f (2n)) = f (n) ◦ F−n(f (n)) = im(f (n)) ◦ coim(f (n)) ◦ im(F−n(f (n))) ◦ coim(Fn(f (n)))

= im(F−n(f (2n))) ◦ i−1
n,2n ◦ coim(f (n)) ◦ im(F−n(f (n))) ◦ F−n(c−1

n,2n) ◦ coim(F−n(f (2n)))
,

(5.18)

which implies that coim(f (n)) ◦ im(F−n(f (n))) is an isomorphism.

Using

im(F−n(f (2n))) ◦ αn = f (n) ◦ im(F−n(f (n))) = im(f (n)) ◦ coim(f (n)) ◦ im(F−n(f (n))), and (5.19)
βn ◦ coim(f (2n)) = coim(Fn(f (n))) ◦ f (n) = coim(Fn(f (n))) ◦ im(f (n)) ◦ coim(f (n)), (5.20)

we find that αn is a monomorphism (and thus an isomorphism), and that βn is an epimorphism (and thus an
isomorphism) for n ≥ N .

Let us now define, for n ≥ N

γn := idA − im(F−n(f (n))) ◦ α−1
n ◦ i−1

n,2n ◦ coim(f (n)), and (5.21)

ζn := idFn(A) − im(f (n)) ◦ c−1
n,2n ◦ β−1

n ◦ coim(Fn(f (n))). (5.22)

We obtain

f (n) ◦ γn = f (n) − f (n) ◦ im(F−n(f (n))) ◦ α−1
n ◦ i−1

n,2n ◦ coim(f (n))

= f (n) − im(F−n(f (2n))) ◦ i−1
n,2n ◦ coim(f (n))

= f (n) − im(f (n)) ◦ coim(f (n))

= 0

, and (5.23)

ζn ◦ f (n) = f (n) − im(f (n)) ◦ c−1
n,2n ◦ β−1

n ◦ coim(Fn(f (n))) ◦ f (n)

= f (n) − im(f (n)) ◦ c−1
n,2n ◦ coim(f (2n))

= f (n) − im(f (n)) ◦ coim(f (n))

= 0

. (5.24)

This implies that there exist uniquely induced morphisms s : A → Ker(f (n)) and t : Coker(f (n)) → Fn(A)
such that ker(f (n)) ◦ s = γn and t ◦ coker(f (n)) = ζn.

As ker(f (n)) ◦ s ◦ker(f (n)) = γn ◦ker(f (n)) = ker(f (n)) and coker(f (n)) ◦ t ◦ coker(f (n)) = coker(f (n)) ◦
ζn = coker(f (n)), we find s ◦ ker(f (n)) = idKer(f(n)) and coker(f (n)) ◦ t = idCoker(f(n)). This shows that
ker(f (n)) is a split monomorphism, and that coker(f (n)) is a split epimorphism. We thus obtain the split
short exact sequences

0 Ker(f (n)) A Coim(f (n)) 0

0 Im(f (n)) Fn(A) Coker(f (n)) 0

ker(f(n)) coim(f(n))

im(f(n)) coker(f(n))

. (5.25)

■

Since the result above provides a direct sum decomposition for arbitrary objects, its application to indecom-
posable objects yields an interesting consequence.

Proposition 5.1.8. Let C be an abelian category equipped with an additive isomorphism F : C → C, let
A ∈ Ob (C) be an indecomposable object of finite length in C (note that Fn(A) is then indecomposable too),
and let f : A → F (A) be a morphism. Either f is an isomorphism, or f is nilpotent.
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Proof. Lemma 5.1.7 gives two split short exact sequences

0 Ker(f (n)) A Coim(f (n)) 0

0 Im(f (n)) Fn(A) Coker(f (n)) 0

ker(f(n)) coim(f(n))

im(f(n)) coker(f(n))

. (5.26)

As A is indecomposable, we know that either ker(f (n)) = 0 or coim(fn) = 0.

Suppose that ker(f (n)) = 0, then we know that coim(f (n)) is an isomorphism, and thus that f (n) is a
split monomorphism as im(f (n)) is a split monomorphism. However, as Fn(A) is indecomposable, this
implies that im(f (n)) is an isomorphism, hence that f (n) is an isomorphism. This implies that f is a split
monomorphism, and after applying F−n this also implies that f is a split epimorphism. We conclude that f
is an isomorphism.

Suppose that coim(f (n)) = 0, then trivially f (n) = 0 as f (n) = im(f (n)) ◦ coim(f (n)). ■

5.1.3 Recognising indecomposable objects by their endomorphism rings

Applying the above discussion to F = idC results in the following statement.

Proposition 5.1.9. Let C be an abelian category, let A ∈ Ob (C) be an indecomposable object of finite length,
and let f : A → A be an endomorphism. Then either f is an isomorphism, or f is nilpotent.

As F = idC , Proposition 5.1.9 is a statement about the structure of a ring. The next result, which is a
straightforward generalisation of [Ben84, Lemma 1.3.3], shows that this ring is local.

Corollary 5.1.10. Let C be an abelian category, and let A ∈ Ob (C) be an indecomposable object of finite
length. HomC(A,A) is a local ring when equipped with the ring structure induced by addition and composition.
The unique maximal left and right ideal in this ring consists of all nilpotent morphisms.

Proof. Suppose that I is a maximal proper left ideal in HomC(A,A), and let f be any morphism not in I . We
will prove that f is an isomorphism, which shows that I consists of all non-invertible morphisms.

As f ̸∈ I , and I is maximal, we conclude that there exist g ∈ HomC(A,A) , h ∈ I such that g ◦ f +h = idA.
Proposition 5.1.9 shows that hn = 0 for some n. We then find (idA + h+ · · ·+ hn−1) ◦ g ◦ f = (idA + h+
· · ·+hn−1)◦ (idA−h) = idA, which shows that f is a split monomorphism. As a split monomorphism into
an indecomposable object, or equivalently because f is not nilpotent as a monomorphism, we conclude that
f is an isomorphism. ■

As with Schur’s lemma over algebraically closed fields (see 2.4.10), this statement becomes somewhat stronger
when the category is enriched over an algebraically closed field.

Corollary 5.1.11. Let C be an abelian category that is VectK-enriched with K an algebraically closed field,
and let A ∈ Ob (C) be an indecomposable object of finite length. We have HomC(A,A) /nilpotents ∼= K as
algebras, which shows that any endomorphism f : A → A can be written as f = λidA + nilpotent for some
λ ∈ K.

Proof. This follows from Corollary 5.1.9 and the fact that division algebras over algebraically closed fields
are isomorphic to that field. ■

It turns out that the converse of the above statement also holds: objects of finite length whose endomorphism
rings are local are indecomposable. Moreover, this remains true in a more general setting.

Proposition 5.1.12. Let C be a pre-additive category, and let A ∈ Ob (C). If HomC(A,A) is a local ring, then
A is indecomposable.
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Proof. Suppose that this is not true, and thus that there exist non-zero objects B,C ∈ Ob (C) and morphisms
incB : B → A, incC : C → A, projB : A → B,projC : A → C such that incB ◦ projB + incC ◦ projC =
idA, projB ◦ incB = idB , projC ◦ incC = idC . Note that incB ◦ projB , incC ◦ projC are not isomorphisms,
as this would imply that incB , incC are isomorphisms, and thus that A ∼= B,C (which is not possible as this
would imply that incC ◦ projC , incB ◦ projB = 0, and thus incC , incB = 0, but these are monomorphisms
from non-zero objects). We conclude that incB ◦ projB , incC ◦ projC are elements of the unique maximal left
and right ideal ofHomC(A,A). This is a contradiction as this would imply that incB ◦ projB + incC ◦ projC =
idA is contained in a proper ideal. ■

Corollary 5.1.13. Let C be an abelian category. An object A ∈ Ob (C) of finite length is indecomposable if
and only if HomC(A,A) is a local ring.

Proof. This follows from Corollary 5.1.10 and Proposition 5.1.12. ■

5.1.4 Recognising simple objects by their endomorphism rings

Schur’s lemma 2.4.9 shows that the endomorphism ring of a simple object is a division ring, and one could
be tempted by the above results to try and prove the converse. However, it turns out that the converse to
Schur’s lemma is not necessarily true!

Remark 5.1.14. Even in very well-behaved settings, the converse of Schur’s lemma may fail. For instance,
[EGNO15, Example 4.3.12] describes a ring category where the monoidal unit is not simple, yet its endomor-
phism ring is a field, and hence a division ring.

However, we can prove the following result, which shows that the converse of Schur’s lemma holds when
morphisms A → B and B → A are “paired”.

Proposition 5.1.15. Let C be a pre-additive category (e.g. abelian), and let A ∈ Ob (C) be an artinian object
such that for any simple object B ∈ Ob (C), we have HomC(A,B) ̸= 0 whenever HomC(B,A) ̸= 0. If
HomC(A,A) is a division ring, then A is a simple object.

Proof. As A is artinian, we know that it has a simple subobject (B, i). Suppose that i ̸= 0, then we find
HomC(A,B) ̸= 0 through the assumption on A. Let p ∈ HomC(A,B) be non-zero. Note that the fact that
i is a monomorphism then implies that i ◦ p ∈ HomC(A,A) is non-zero. As a non-zero morphism, i ◦ p is
an isomorphism by assumption. We can thus conclude that i is a split epimorphism, and since it is also a
monomorphism, we see that i is an isomorphism. We conclude that A has no non-zero proper subobjects,
and thus that A is simple. ■

One class of pre-additive categories that exhibits such a pairing between the hom-spaces HomC(A,B) and
HomC(B,A) is the class of semisimple Schur categories.

Corollary 5.1.16. Let C be a semisimple Schur category. An object A ∈ Ob (C) is simple if and only if its
endomorphism ring HomC(A,A) is a division ring.

Proof. Let A ∈ Ob (C) be an arbitrary object, and let B ∈ Ob (C) be a simple object. If A ∼= A1⊕· · ·⊕An is
a decomposition into simple objects, then HomC(B,A) ̸= 0 if and only if Ai

∼= B for some i ∈ {1, . . . , n}.
It is immediately clear that then also HomC(A,B) ̸= 0. ■
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5.2 Ideals in categories enriched over commutative rings

5.2.1 An oidification of ideals in algebras

In Chapter 1, we discussed groupoids and how they are the oidification (or horizontal categorification) of
groups. We can carry out a similar process for algebras over a commutative ring R, which leads to the
notion of R-algebroids (or ringoids1 when R = Z). It is clear that any R-algebra defines a RMod-enriched
category with a single object. This shows that R-algebroids are precisely RMod-enriched categories.

As an oidification of algebras, it is natural to expect a corresponding notion of ideals in RMod-enriched
categories. Since the algebroid structure lives on the morphisms, such ideals should be defined in terms of
the hom-sets.

Let C be the category with a single object ⋆, corresponding to some R-algebra A. An ideal in A corresponds
to a subgroup (I,+) ≤ (HomC(⋆, ⋆) ,+) that is closed under left or right composition (i.e., multiplication)
with arbitrary morphisms.

This motivates the following natural notion of ideals in pre-additive categories.

Definition 5.2.1 (Ideals in categories enriched over commutative rings, [AKO02, § 1.3]). Let R
be a commutative ring, and let C be a RMod-enriched category. An ideal I in C consists of a collection
(I(A,B),+) ≤ (HomC(A,B) ,+) of subgroups for allA,B ∈ Ob (C), such that for allA,B,C,D ∈ Ob (C)
and f ∈ I(B,C), g ∈ HomC(A,B) , h ∈ HomC(C,D)

f ◦ g ∈ I(A,C) and h ◦ f ∈ I(B,D). (5.27)

If only the first of those two properties holds, then I is called a right ideal, and if only the second of those
two property holds, then I is called a left ideal.

We write I ≤ C to indicate that I is an ideal in C.

Ideals in RMod-enriched categories are instances of Definition 5.0.1, with Struct = RCat consisting of
RMod-enriched categories, M = RMod, and BinOp = {◦}.

Remark 5.2.2. We can make the oidification even more explicit by introducing a groupoid corresponding
to the abelian group (A,+) in the algebraic setting. To this end, we define a RMod-enriched groupoid
(Hom(C),+), where

1. Ob
(
Hom(C)

)
= the hom-sets in C,

2. HomHom(C)
(
HomC(A,B) ,HomC(C,D)

)
= ∅ if A ̸= C or B ̸= D, and HomC(A,B) otherwise,

3. for f, g ∈ HomHom(C)
(
HomC(A,B) ,HomC(A,B)

)
= HomC(A,B), we define composition by f ◦

g := f + g.

The oidification of a subgroup (I,+) ≤ (A,+) is then a subgroupoid (I,+) ⊆ (Hom(C),+), which defines
subgroups (I(A,B),+) ≤ (HomC(A,B) ,+) for all2 A,B ∈ Ob (C), such that g ◦ I ⊆ I (respectively,
I ◦ g ⊆ I) for all morphisms g, where g ◦ I := {g ◦ f | f ∈ I such that g ◦ f is defined}. Note that this
condition implies that I(A,B) ≤ HomC(A,B) as R-modules.

Just as ideals in ring theory allow the construction of quotient rings, ideals in categories allow us to define
quotients of categories.

Definition 5.2.3 (Quotient of categories enriched over commutative rings, [AKO02, § 1.3]). Let R
be a commutative ring, let C be a RMod-enriched category, and let I be an ideal in C. We can then define a
new RMod-enriched category C/I , called the quotient of C by I , with the following data

1Ringoids by John Baez, [Bae06], is a nice blog post about ringoids and enriched category theory.
2One could argue that for a proper oidification, one would only need to specify I(A,B) for some A,B ∈ Ob (C). However, can

always set I(A,B) = 0 for all other objects. This does not cause issues in the definition of ideals, as g ◦ 0 = 0 follows from
g ◦ 0 + g ◦ 0 = g ◦ 0.
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1. Ob
(
C/I

)
:= Ob (C),

2. for A,B ∈ Ob
(
C/I

)
, we set HomC/I(A,B) := HomC(A,B) /I(A,B),

3. the composition is inherited from C (and is well-defined through the left and right composition prop-
erties of ideals).

We obtain a canonical (R-linear) quotient functor

quotI : C → C/I : A 7→ A and (f : A → B) 7→ (f + I(A,B) : A → B). (5.28)

Remark 5.2.4. This construction shows that, in Definition 5.0.1, Struct′ = RCat′ = RCat = Struct in
the RMod-enriched setting. This equality Struct = Struct′ does not hold generally.

In what follows we will usually be interested in a structure category Struct that is strictly included in RCat,
for example: Schur categories, (artinian) abelian categories, (symmetric) tensor categories, . . .

In these settings, Struct and Struct′ will usually not be equal. For example; quotients of abelian categories
need not be abelian.

In the following sections, we will often restrict ourselves to the case R = Z. This is the most general setting:
any RMod-enriched category is pre-additive, and any R-linear ideal is also an ideal in the pre-additive
sense.

5.2.2 Ideals and indecomposable objects

Next, we want to show that, as with any other structure, understanding ideals on indecomposable objects
suffices to determine them fully.

Proposition 5.2.5 ([AKO02, § 1.3]). Let C be an additive category, let A,B ∈ Ob (C) be two objects that
admit decompositions into indecomposable objects, and let I ≤ C be an ideal. Let A =

⊕
k Ak and B =

⊕
Bℓ

be decompositions into indecomposables. For any morphism f : A → B, with decomposition f =
⊕

k,ℓ fkℓ, we
have

f ∈ I(A,B) if and only if fkℓ ∈ I(Ak, Bℓ) for all k, ℓ. (5.29)

Proof. Let incAk
: Ak → A, incBℓ

: Bℓ → B, projAk
: A → Ak, projBℓ

: B → Bℓ be the inclusion and
projection morphisms of the decompositions into indecomposables.

Suppose first that f ∈ I(A,B). As I is an ideal, we immediately find that fkℓ = projBℓ
◦f ◦ incAk

∈
I(Ak, Bℓ) for any k, ℓ.

Suppose that fkℓ ∈ I(Ak, Bℓ) for all k, ℓ. f =
∑

k,ℓ incBℓ
◦fkℓ ◦ projAk

is the sum of morphisms in the
ideal composed with other morphisms, hence an element of the ideal. ■

Crucially, the indecomposable objects of the quotient category are fully determined by the indecomposable
objects of the original category.

Proposition 5.2.6. Let C be an additive category, and let I ≤ C be an ideal.

1. An object in C/I is indecomposable if and only if it is the image of an indecomposable object in C under
the canonical quotient functor quotI : C → C/I .

2. If C is semisimple and Schur, then quotI : C → C/I preserves simple objects (although non-zero simple
objects could become null objects). As a consequence, an object in C/I is simple if and only if it is the
image of a simple object in C under quotI .

3. If C is artinian abelian, an object in C/I is indecomposable if and only if its endomorphism ring is local
and all endomorphisms are either nilpotent or an isomorphism.

99



5 Semisimplification

Proof. For (1), suppose that A ∈ Ob (C) is indecomposable in C/I , but not in C. This implies that we find
indecomposable objects X1, . . . , Xn ∈ Ob (C) such that A = X1 ⊕ · · · ⊕Xn in C. As quotI is additive, this
then implies that quotI(A) = quotI(X1)⊕ · · · ⊕ quotI(Xn). quotI(A) is indecomposable, which implies
without loss of generality that quotI(X2), . . . , quotI(Xn) = 0, and thus quotI(A) = quotI(X1). This
shows that it is the image of an indecomposable object under quotI .

For the other direction and (3), it suffices to prove that HomC(A,A) /I(A,A) is local if HomC(A,A) is local
(Proposition 5.1.12). This follows from Proposition 5.1.4 and Corollary 5.1.10.

For (2), let A ∈ Ob (C) be a simple object. For any morphism i + I : X → A in C/I , the fact that C is
semisimple and Schur implies that i : X → A is either zero or a split epimorphism (by composing with incB
for any simple object B in a decomposition into simple objects of X). This then implies that i + I is also a
split epimorphism. So, if i + I : X → A is a monomorphism, then it is an isomorphism. We conclude that
A is simple in C/I . The final part of the statement follows from (1). ■

Corollary 5.2.7. Let C be a semisimple Schur category, and let I ≤ C be an ideal. C/I is also a semisimple
Schur category.

Proof. Proposition 5.2.6 shows that any indecomposable object in C/I is simple, and that any object A ∈
Ob

(
C/I

)
is simple if and only if it is the image of a simple object in C. We conclude that C/I is semisimple.

Let f + I : A → B be any morphism between simple objects in C/I . Without loss of generality, we can
assume that A and B are simple in C too. This implies that f : A → B is either zero or an isomorphism,
which implies that f + I is either zero or an isomorphism. ■

5.2.3 The radical of a category

The most important example (for us) of an ideal in a category enriched over some commutative ring, is a
generalisation of the Jacobson radical 5.1.1.

Definition 5.2.8 (The Jacobson radical of a category, [AKO02, Définition 1.4.1]). Let R be a commu-
tative ring, and let C be a RMod-enriched category. For any A,B ∈ Ob (C), we define

rad(C)(A,B) : = {f : A → B | (∀g : B → A)(idA − g ◦ f is a split epimorphism)} (5.30)
= {f : A → B | (∀g : B → A)(idA − g ◦ f is an isomorphism)} (5.31)
= {f : A → B | (∀g : B → A)(idB − f ◦ g is a split monomorphism)} (5.32)
= {f : A → B | (∀g : B → A)(idB − f ◦ g is an isomorphism)}. (5.33)

The proof that this is is an ideal in the sense of Definition 5.2.1, and that the different definitions align, is
exactly the same as the one given in Definition 5.1.1.

What the radical tells us about a category

A first interesting result is that the radical provides insight into a converse to Schur’s lemma 2.4.9.

Proposition 5.2.9. Let C be a Schur category, and letA ∈ Ob (C) be an artinian object such that rad(C)(B,A) =
0 for every simple object B ∈ Ob (C). A is simple if and only if HomC(A,A) is a division ring.

Proof. Suppose that HomC(B,A) ̸= 0 for some simple object B ∈ Ob (C). If HomC(A,B) = 0, then
rad(C)(B,A) = HomC(B,A) ̸= 0. We conclude the result from Proposition 5.1.15. ■

In the context of division rings, we also have the following statement.

Lemma 5.2.10 ([AKO02, Lemme 1.4.9]). Let C be a pre-additive category. If A ∈ Ob (C) is an object such
that HomC(A,A) is a division ring, then rad(C)(A,B) = {f : A → B | (∀g : B → A)(g ◦ f = 0)} for any
other object B ∈ Ob (C).
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Proof. Suppose that f ∈ rad(C)(A,B). We then know that for any morphism g : B → A, g ◦ f ∈
rad(C)(A,A). As HomC(A,A) is a division ring, we know that rad(C)(A,A) = 0, hence that g ◦ f = 0.
Proving the other inclusion is trivial. ■

Finally, the radical tells us whether a category is semisimple.

Corollary 5.2.11. Let C be an additive category.

1. If rad(C) = 0 and all endomorphism rings corresponding to indecomposable objects are local, then C is
Schur.

2. If C is such that every object has a decomposition into indecomposable objects and such that all endomor-
phism rings corresponding to indecomposable objects are local, then C is Schur and semisimple if and only
if rad(C) = 0.

Proof. We will first prove (1). Let A,B ∈ Ob (C) be two indecomposable objects and let f : A → B be non-
zero. We know that rad(C)(A,B) = 0, which implies that there exists g : B → A such that idA−g◦f is not
invertible. However, this implies that idA−g◦f is in the maximal ideal of the local ring HomC(A,A), which
is rad(C)(A,A) = 0. We conclude that g ◦ f = idA, and thus that f is a split monomorphism. Similarly we
show that f is a split epimorphism, and we conclude that f is an isomorphism.

Suppose now that C is such that every object has a decomposition into indecomposable objects. We al-
ready know that C is Schur if rad(C) = 0, and Proposition 5.2.9 implies that all indecomposable objects in
C are actually simple. We conclude that C is semisimple. Conversely, if C is Schur and semisimple, then
Lemma 5.2.10 implies that rad(C)(A,B) = 0 for any two indecomposable objects A,B ∈ Ob (C). We
conclude that rad(C) = 0 through Proposition 5.2.5. ■

Remark 5.2.12. Combining Proposition 5.2.9 and Corollary 5.2.11 gives Corollary 5.1.16.

Radical functors and the structure of quotients

The radical is sufficiently important that we introduce structure-preserving functors which respect it.

Definition 5.2.13 (Radical functors, [AKO02, Définition 1.4.6]). Let R be a commutative ring, and let
C,D be RMod-enriched categories. An R-linear functor F : C → D is called radical if

F (rad(C)) ⊆ rad(D), i.e. F (rad(C)(A,B)) ⊆ rad(D)(F (A), F (B)) for all A,B ∈ Ob (C) . (5.34)

Lemma 5.2.14 ([AKO02, Lemme 1.4.7]). Let C,D be pre-additive categories.

1. Full additive functors F : C → D are radical.

2. Additive functors F : C → D that reflect split epimorphisms are such that F−1(rad(D)) ⊆ rad(C).

3. Additive functors F : C → D that are full and reflect split epimorphisms are such that F (rad(C)) =
rad(D)|F (Ob(C)).

Proof. Let A,B ∈ Ob (C). For the first statement, we want to show that f ∈ rad(C)(A,B) implies that
F (f) ∈ rad(D)(F (A), F (B)). Let h ∈ HomD

(
F (B), F (A)

)
, we have to show that idF (A) − h ◦ F (f) is

a split epimorphism if f ∈ rad(C)(A,B). As F is full, we find g ∈ HomC(B,A) such that F (g) = h. It
is then clear that idF (A) − h ◦ F (f) = F (idA − g ◦ f) is a split epimorphism, as functors preserve split
epimorphisms.

For the second statement, we want to show that if f ∈ HomC(A,B) is such thatF (f) ∈ rad(D)(F (A), F (B)),
then f ∈ rad(C)(A,B). For any g ∈ HomC(B,A), we then have that F (idA−g◦f) = idF (A)−F (g)◦F (f)
is a split epimorphism, and thus that idA−g ◦f is a split epimorphism. We conclude that f ∈ rad(C)(A,B).

The third statement follows from the first two statements. ■
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Lemma 5.2.15. Let C be a pre-additive category. The canonical quotient functor quotrad(C) : C → C/rad(C)
is full and reflects split epimorphisms and split monomorphisms, and thus in particular isomorphisms. As a
consequence, we find rad(C/rad(C)) = 0.

Proof. Let A,B ∈ Ob (C), and suppose that f ∈ HomC(A,B) is such that quotrad(C)(f) is a split epi-
morphism (resp. split monomorphism). This means that there exists g ∈ HomC(B,A) such that f ◦ g +
rad(C)(B,B) = idB + rad(C)(B,B) (resp. g ◦ f + rad(C)(A,A) = idA + rad(C)(A,A)), hence that there
exists k ∈ rad(C)(B,B) (resp. k ∈ rad(C)(A,A)) such that f ◦ g = idB − k (resp. g ◦ f = idA − k).
The definition of the radical implies that this is an isomorphism. We can thus find h ∈ HomC(B,B) (resp.
h ∈ HomC(A,A)) such that f ◦ (g ◦ h) = idB (resp. (h ◦ g) ◦ f = idA), which shows that f is a split
epimorphism (resp. split monomorphism).

The final statement follows from the above Lemma 5.2.14. ■

Proposition 5.2.16 ([AKO02, Lemme 2.1.5]). Let C be an additive category such that all endomorphism
rings corresponding to indecomposable objects are local, and such that every object has a decomposition into
indecomposable objects. For any ideal I ≤ C, we have rad(C/I) = quotI(rad(C)) = rad(C) + I .

Proof. We have a full linear functor C/I → C/(rad(C) + I), which means that we can use Lemma 5.2.14.
For any f ∈ rad(C/I), we thus find that f + rad(C) + I ∈ rad(C/(rad(C) + I)). Now, Corollary 5.2.11,
Proposition 5.2.6, and Proposition 5.1.4 show that C/rad(C) is a semisimple Schur category. Corollary 5.2.7
then shows that C/(rad(C)+I) is also a semisimple Schur category, and using Corollary 5.2.11 we find that
rad(C/(rad(C) + I)) = 0. We conclude that f + rad(C) + I = rad(C) + I for all f ∈ rad(C/I), and thus
that rad(C/I) ⊆ rad(C) + I . The other inclusion is trivial. ■

5.2.4 Semisimplification of abelian categories

Proposition 5.2.17. Let C be an additive category such that all objects have a decomposition into indecompos-
able objects and such that all indecomposable objects have local endomorphism rings. C/rad(C) is a semisimple
Schur category such that rad(C/rad(C)) = 0.

Proof. This follows from Lemma 5.2.15 and Corollary 5.2.11. ■

Corollary 5.2.18. Let C be an additive category such that all endomorphism rings corresponding to indecom-
posable objects are local, and such that every object has a decomposition into indecomposable objects (e.g. an
abelian category in which every object has finite length). C/rad(C) is a semisimple Schur category. Furthermore,
if I ≤ C is any ideal such that C/I is semisimple and Schur, then rad(C) ⊆ I .

Proof. This follows from the above Proposition 5.2.17 Corollary 5.2.11, and Proposition 5.2.16. ■

Remark 5.2.19. The above result shows that C/rad(C) is the semisimplification of C in the sense of Defini-
tion 5.0.2.

This naturally raises the question of what the structure of the quotient category C/I is when rad(C) ⊆ I .

Lemma 5.2.20. Let C be an additive category such that all endomorphism rings corresponding to indecom-
posable objects are local, and such that every object has a decomposition into indecomposable objects (e.g. an
abelian category in which every object has finite length). Let I ≤ C be any ideal, and let A,B ∈ Ob (C) be
any two indecomposable objects. If I(A,B) is not contained in rad(C)(A,B), then A ∼= B and I(A,X) =
HomC(A,X) , I(X,A) = HomC(X,A) , I(B,X) = HomC(B,X) , I(X,B) = HomC(X,B) for all X ∈
Ob (C).

This implies that any indecomposable object A ∈ Ob (C) satisfying this property (by which we mean that there
exists an indecomposable object B ∈ Ob (C) such that I(A,B) ̸⊆ rad(C)(A,B) or I(B,A) ̸⊆ rad(C)(B,A))
gets mapped to a null object under the canonical quotient functor quotI .
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Proof. Suppose that f ∈ I(A,B) but not in rad(C)(A,B). This implies that there exists g, h : B → A such
that idA − g ◦ f and idB − f ◦ h are not invertible. However, as A and B are indecomposable we find that
HomC(A,A) and HomC(B,B) are local rings, and thus that g ◦ f and f ◦h are isomorphisms. We conclude
that f is an isomorphism. This implies that idA ∈ I(A,A) and idB ∈ I(B,B) as idA = f−1 ◦ f and
idB = f ◦ f−1. We conclude that any morphism g : A → X is contained in I(A,X) by composing with
idA, and similarly for the other equalities. ■

It is then clear that, when rad(C) ⊆ I , C/I is essentially C/rad(C) with some more simple objects set to
zero. If I(A,B) ̸= rad(C)(A,B) for simple objects A,B ∈ Ob (C), then A and B are null objects. If
I(A,B) = rad(C)(A,B), then we find the same structure as in C/rad(C).

When is the semisimplification simple

Above we provided a semisimplification procedure on Struct = FinAbCat, abelian categories in which
all objects have finite length. However, we cannot assume at this point that this semisimplification procedure
ends up in FinAbCat.

More generally, there are two major pitfalls to be aware of when dealing with quotients of abelian categories.
First, the quotient of an abelian category by an ideal is generally not abelian. Second, even when the quotient
is abelian, the canonical quotient functor is almost never exact.

We will now prove that the semisimplification procedure does end up in a semisimple abelian category.

The proof of the following result was inspired by the author’s earlier work in [Sle24, Proposition 7.3.1].

Proposition 5.2.21. A semisimple Schur category C is abelian.

Proof. Let A,B ∈ Ob (C) be objects with decompositions A = A1 ⊕ · · · ⊕An and B = B1 ⊕ · · · ⊕Bm into
simple objects, and let f : A → B be a morphism. As C is Schur, we know that fij := projBj

◦f ◦ incAi is
either zero or invertible for all i, j.

We will first prove that C is pre-abelian, i.e. that f admits a kernel and a cokernel.

Let X be a simple object that appears in the decomposition of A nX and mX times respectively (mX could
be zero), and let inciX , projjX be the different inclusions of X into A and the different projections of B onto
X respectively.

If mX = 0, then we set kX := idnXX .

If mX ≥ 1, then we define an mX × nX -matrix over the division ring R = HomC(X,X)

f (X) :=


f11 f21 . . . fnX1

f12 f22 . . . fnX2

...
...

...
...

f1mX
f2mX

. . . fnXmX

 where fij := projjX ◦f ◦ inciX . (5.35)

This is a morphism in the abelian category of finitely generated R-modules, RFinMod, and we thus know
that it has a kernel ker(f (X)). BecauseR is a division ring, we know that everyR-module is free. In particular,
this implies that ker(f (X)) : RaX → RnX for some aX ≥ 0. This then induces a morphism kX : aXX →
nXX as kX :=

∑aX

i=1

∑nX

j=1 incj ◦ker(f (X))ij ◦ proji. We know that, as a monomorphism in a semisimple
abelian category, ker(f (X)) is split (Proposition 2.4.7). This implies that kX is a split monomorphism.

We then define k :=
∑

X incnXX ◦kX ◦ projaXX , which is once again a split monomorphism because it
decomposes into split monomorphisms.
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We have
f ◦ k =

∑
X

∑
i,j,k

incjX ◦fij ◦ kXki ◦ projkX

=
∑
X

incnXX ◦f (X) · ker(f (X)) ◦ projaXX

= 0

, (5.36)

where we have used the fact that the contributions from f are zero when X is not a direct summand in both
the decompositions of A and B (as C is Schur).

Let g be any other morphism such that f ◦ g = 0. Suppose that g : C → A with a decomposition C =
C1 ⊕ · · · ⊕ Cr . We know that any direct summand in the decomposition of C that does not appear in the
decomposition of A will result in a zero contribution to g. So, assume that X is a direct summand in the
decompositions of C and A. As ker(f (X)) is the kernel for f (X), we know that there is a uniquely induced
matrix ℓ(X) such that ker(f (X)) · ℓ(X) = g(X) (if X does not appear in the decomposition of B then this is
trivial with ker(f (X)) the identity matrix). These matrices induce a morphism ℓ such that k ◦ ℓ = g (which
can be checked as in the above), necessarily unique as k is a monomorphism.

We will now prove that all monomorphisms are split monomorphisms, and similarly we would find that all
epimorphisms are split epimorphisms. Proposition 2.2.5 then implies that monomorphisms are kernels and
that epimorphisms are cokernels, from which we can conclude that C is abelian.

Suppose that f : A → B is a monomorphism. If there is a simple object X in the decomposition of A that
does not appear in the decomposition of B (i.e. such that mX = 0), then f cannot be a monomorphism as
f ◦ incX = 0.

Furthermore, as f is a monomorphism, the matrices f (X) are monomorphisms too. As monomorphisms in a
semisimple abelian category, these are then split monomorphisms. We conclude that f is a split monomor-
phism as before. ■

Corollary 5.2.22. Let C be an additive category such that all objects have a decomposition into indecomposable
objects and such that all indecomposable objects have local endomorphism rings. C/rad(C) is a semisimple
abelian category. Moreover, any ideal I ≤ C such that C/I is semisimple and abelian must contain rad(C).

Proof. This follows from Proposition 5.2.17 and Proposition 5.2.21. ■

5.3 Ideals in tensor categories

5.3.1 Tensor ideals

Above, we discussed ideals in RMod-enriched categories, which made sense as these are algebroids. We can
do something similar for monoidal categories, as the monoidal product equips morphisms with some notion
of multiplication3. This leads to the following notion of ideals in monoidal categories.

Definition 5.3.1 (Tensor ideals in monoidal categories, [EO21a, § 2.1]). Let (C,⊗,1, α, λ, ρ) be a
monoidal category that is pre-additive, and suppose that the monoidal product is bilinear on morphisms
(Proposition 4.1.1 and Proposition 4.1.2 then show that the category is enriched over the commutative ring
HomC(1,1)). A tensor ideal I in C consists of an ideal I ≤ C in the pre-additive sense (these will auto-
matically be ideals for the ring HomC(1,1)), such that for all A,B,C,D ∈ Ob (C) and f ∈ I(A,B), g ∈
HomC(C,D)

f ⊗ g ∈ I(A⊗ C,B ⊗D) and g ⊗ f ∈ I(C ⊗A,D ⊗B). (5.37)

If only the first of those two properties holds, then I is called a right tensor ideal, and if only the second of
those two properties holds, then I is called a left tensor ideal.

3One could think of an additive monoidal category with bilinear monoidal product as being like rings on two levels: the composition
gives endomorphism sets a ring structure, while biproducts and the monoidal product endow objects with something resembling a
ring structure.
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Equipped with such a tensor ideal I , the quotient category C/I defined in Definition 5.2.3 is again a pre-
additive monoidal4 category (the monoidal product is inherited from the monoidal product on C). In this
case, the canonical quotient functor quotI : C → C/I is monoidal by setting ζ := id1 + I(1,1) and
ε(A,B) := idA⊗B + I(A ⊗ B,A ⊗ B). This functor allows us to transfer a lot of knowledge and data from
C to C/I (duals, braidings, . . . ).

Remark 5.3.2. These ideals are instances of Definition 5.0.1, with Struct consisting of pre-additive monoidal
categories such that the monoidal product is bilinear on morphisms, M = Ab, and BinOp = {◦,⊗}.

Remark 5.3.3 ([AKO02, Définition 6.1.1]). An equivalent definition of tensor ideals is that a pre-additive ideal
I ≤ C is a tensor ideal if, for every object A ∈ Ob (C), the maps idA ⊗ − and − ⊗ idA send morphisms in
I to morphisms in I .

5.3.2 Constructing tensor ideals

We will now work towards finding the largest proper right or left tensor ideal in pre-additive left or right rigid
monoidal categories such that the monoidal product is bilinear on morphisms, as discussed in [AKO02].

Proposition 5.3.4 ([AKO02, Lemme 6.1.5]). Let C be a left (resp. right) rigid monoidal and pre-additive
category such that the monoidal product is bilinear on morphisms. For two right (resp. left) tensor ideals I and
J in C, we have I ⊆ J (i.e. I(A,B) ⊆ J (A,B) for all A,B ∈ Ob (C)) if and only if I(1, A) ⊆ J (1, A) for
all A ∈ Ob (C).

Proof. Suppose that I and J are right tensor ideals, suppose that the second property holds, and suppose
that we have some f ∈ I(A,B) with A,B ∈ Ob (C). Then, because I is a right tensor ideal

f ∈ I(1, B ⊗A∗) ⊆ J (1, B ⊗A∗), and thus f = f ∈ J (A,B). (5.38)

Similarly, for left tensor ideals in right rigid categories

f ∈ I(1, ∗A⊗B) ⊆ J (1, ∗A⊗B), and thus f = f ∈ J (A,B). (5.39)

■

The preceding result suggests a method for constructing a right tensor ideal and a left tensor ideal from a
family of subgroups I(1, A) ≤ HomC(1, A).

Construction 1. Let C be a left (resp. right) rigid monoidal and pre-additive category such that the monoidal
product is bilinear on morphisms. If we have a family of subgroups I(A) ≤ HomC(1, A) for all A ∈ Ob (C),

4If we use left or right tensor ideals, then we will not end up with a monoidal category, but with a left or right module category over
the original monoidal category.
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which are closed under left composition in the sense that g ∈ I(A) implies k ◦ g ∈ I(B) for all k ∈
HomC(A,B), then we can construct an ideal I left

⊗ (resp. Iright
⊗ ), where for A,B ∈ Ob (C)

I left
⊗ (A,B) contains g for g ∈ I(B ⊗A∗), and (5.40)

Iright
⊗ (A,B) contains g for g ∈ I(∗A⊗B). (5.41)

Note that I left
⊗ (1, A) = I(A) (resp. Iright

⊗ (1, A) = I(A)).

Proposition 5.3.5 ([AKO02, Lemme 6.1.6]). Let C be a left (resp. right) rigid monoidal and pre-additive
category such that the monoidal product is bilinear on morphisms. If we have a class of subgroups I given by
I(A) ≤ HomC(1, A) for all A ∈ Ob (C), and if I is closed under left composition in the sense that g ∈ I(A)

implies k ◦ g ∈ I(B) for all k ∈ HomC(A,B), then I left
⊗ (resp. Iright

⊗ ), defined in Construction 1 above, is a
right (resp. left) tensor ideal in C.

Proof. We will only prove the statement for left rigid categories.

We will first prove that I left
⊗ is an ideal in the sense of Definition 5.2.1, i.e. a pre-additive ideal. For this, note

that for all g ∈ I(B ⊗A∗), k1 ∈ HomC(A
∗, C∗) , k2 ∈ HomC(B,C)

g

k1

∈ I(B ⊗ C∗) and

g

k2

∈ I(C ⊗A∗). (5.42)

This implies that for arbitrary h1 ∈ HomC(C,A) and h2 ∈ HomC(B,C)

g

h1

=

g

h1
∗

∈ I left
⊗ (C,B) and

g

h2

=

g

h2

∈ I left
⊗ (A,C).

(5.43)

We now need to prove that I left
⊗ is a right ideal in the sense of Definition 5.3.1, i.e. that is it is closed under
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monoidal products. For this, note that for all g ∈ I(B ⊗A∗), k ∈ HomC(C,D)

g

k

∈ I(B ⊗D ⊗D∗ ⊗B∗), (5.44)

and thus

g k =

g

k

∈ I left
⊗ (A⊗ C,B ⊗D). (5.45)

■

Remark 5.3.6. Let C be a left (resp. right) rigid monoidal and pre-additive category such that the monoidal
product is bilinear on morphisms, and let I ≤ C be an arbitrary pre-additive ideal in the sense of Defini-
tion 5.2.1. Construction 1 defines an ideal I left

⊗ (resp. Iright
⊗ ) by applying the construction to the groups

I(1, A).

By Proposition 5.3.4 and Proposition 5.3.5, I coincides with I left
⊗ (resp. Iright

⊗ ) when I is already a left (resp.
right) tensor ideal. Even stronger, for two pre-additive ideals I,J ≤ C, an inclusion I(1, A) ⊆ J (1, A)

(e.g. when I ⊆ J ) suffices to show that I left
⊗ ⊆ J left

⊗ (resp. Iright
⊗ ⊆ J right

⊗ ).

5.3.3 Maximal tensor ideals

We now aim to show that tensor categories are “local” in the sense that they resemble local rings. To this
end, we seek an appropriate notion of a radical in tensor categories. A natural candidate in our setting arises
by applying Construction 1 to the pre-additive Jacobson radical rad(C).

In the next proposition, which is a slight generalisation of [AKO02, Proposition 7.1.4], we demonstrate that
this notion of a radical generalises (1) and (2) in Proposition 5.1.2.

Proposition 5.3.7 ([AKO02, Proposition 7.1.4]). Let C be a left (resp. right) rigid monoidal and pre-additive
category such that the monoidal product is bilinear on morphisms, and such that HomC(1,1) is a field (equiv-
alently, due to Propositon 4.1.1, a division ring). The right (resp. left) tensor ideal rad(C)left⊗ (resp. rad(C)right⊗ )
is the maximal proper right (resp. left) tensor ideal of C.

Suppose that, in addition, C is additive, such that all objects have a decomposition into indecomposable objects,
and such that all endomorphism rings corresponding to indecomposable objects are local. If I ≤ C is a right (resp.
left) tensor ideal such that C/I is semisimple, Schur, and non-zero, then I = rad(C)left⊗ (resp. I = rad(C)right⊗ ).
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Proof. We will only prove the statement for right tensor ideals; the proof for left tensor ideals is analogous.

Proposition 5.3.4 and Remark 5.3.6 show that we only have to prove that for any left tensor ideal I , we have
I(1, A) ⊆ rad(C)(1, A) for all A ∈ Ob (C). Applying Lemma 5.2.10, we find that f ∈ rad(C)left⊗ (1, A) =
rad(C)(1, A) if and only if g ◦f = 0 for all g : A → 1. For f ∈ I(1, A), suppose that there exists g : A → 1

such that g ◦ f ̸= 0. Because HomC(1,1) is a field, we may assume that g ◦ f = id1. This implies that
id1 ∈ I(1,1), and thus that I(1, A) = HomC(1, A). Proposition 5.3.4 now implies that I = Hom(C).

Suppose now that C is additive, such that all objects have a decomposition into indecomposable objects,
and such that all endomorphism rings corresponding to indecomposable objects are local. If I is such that
C/I is semisimple and Schur, then rad(C) ⊆ I through Corollary 5.2.18. Remark 5.3.6 then implies that
rad(C)left⊗ ⊆ I . As rad(C)left⊗ is maximal, and C/I is non-zero (hence I ̸= Hom(C)), this implies that
rad(C)left⊗ = I . ■

Remark 5.3.8. We did not prove that C/rad(C)left⊗ (resp. C/rad(C)right⊗ ) is semisimple and Schur when C is
well-behaved with regard to indecomposable objects. Rather, we showed that if there exists a right (resp.
left) tensor ideal I ⊊ C such that the quotient C/I is semisimple (such an ideal need not exist a priori), then
I must be equal to rad(C)left⊗ (resp. rad(C)right⊗ ). In Corollary 5.6.1, we will show that these quotients are
indeed semisimple and Schur when the category is rigid.

The above generalisation of (1) and (2) in Proposition 5.1.2 raises a natural question: do the maximal tensor
ideals also satisfy the property of local rings that the maximal ideals consist of the non-invertible morphisms?
The answer is, roughly, yes. More precisely, in Proposition 5.5.10, we will show that this holds for indecom-
posable objects that are not “of dimension zero”.

5.3.4 Negligible morphisms

We now know that tensor categories admit maximal tensor ideals, but we do not yet have a concrete descrip-
tion of their structure. In Section 5.5, we will show that these ideals roughly consist of the non-invertible
morphisms between indecomposable objects. However, in the case of pivotal categories, we will show in
this section that these ideals admit particularly nice explicit descriptions in terms of the left and right traces
introduced in Section 3.5.

Definition 5.3.9 (Tensor ideals of negligible morphisms, [EO21a, Definition 2.1]). Let C be a pre-
additive pivotal category (with pivotal structure α) such that the monoidal product is bilinear on morphisms.
We construct ideals

N left(A,B) := {f : A → B | (∀g : B → A)(trleft(αA ◦ g ◦ f) = 0)}, (5.46)
N right(A,B) := {f : A → B | (∀g : B → A)(trright(g ◦ f ◦ α−1

A ) = 0)}, (5.47)

called the ideal of left negligible morphisms and the ideal of right negligible morphisms respectively.

Proposition 3.5.4 shows that these can equivalently be defined as

N left(A,B) := {f : A → B | (∀g : B → A)(trleft(αB ◦ f ◦ g) = 0)}, (5.48)
N right(A,B) := {f : A → B | (∀g : B → A)(trright(f ◦ g ◦ α−1

B ) = 0)}. (5.49)

Proposition 5.3.10 ([AKO02, Lemme 7.1.1] and [EO21a, Lemma 2.3]). Let C be a pre-additive pivotal
category such that the monoidal product is bilinear on morphisms. The ideals of left and right negligible mor-
phisms, defined in Definition 5.3.9, are right and left tensor ideals respectively.

Proof. Through the additivity of the trace (which follows from the fact the composition and monoidal product
are bilinear on morphisms), we see that N left(A,B) is a subgroup of (HomC(A,B) ,+)
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To see that N left is a pre-additive ideal in the sense of Definition 5.2.1, let A,B,C,D ∈ Ob (C), let g ∈
HomC(A,B) , h ∈ HomC(C,D), and let f ∈ N left(B,C). We find that h ◦ f ∈ N left(B,D) and f ◦ g ∈
N left(A,C), as for any k1 : D → A and k2 : C → A

αA

h

f

k1

=

αA

f

k1 ◦ h = 0 and

αA

f

g

k2

=

g∗∗

k2

f

αA

=

αB

k2

f

g

=

αB

f

g ◦ k2 = 0. (5.50)

Finally, we show that N left is a right tensor ideal in the sense of Definition 5.3.1. Let A,B,C,D ∈ Ob (C),
let g ∈ HomC(C,D), and let f ∈ N left(A,B). For any k : B ⊗D → A⊗ C , we find

f g

k

αA αC

=

αA

f

k = 0 with k =

g

k

αC

. (5.51)

■

Remark 5.3.11. If the category C in Definition 5.3.9 is spherical, then N left = N right, and these are then
tensor ideals. More generally, this holds when C is such that for all f : A → A in C, we have trleft(αA◦f) = 0
if and only if trright(f ◦ α−1

A ) = 0.

We will now prove that these ideals are the maximal tensor ideals.

Proposition 5.3.12 ([AKO02, Proposition 7.1.4]). Let C be a pre-additive pivotal category such that the
monoidal product is bilinear on morphisms, and such that HomC(1,1) is a field.

We have
N left = rad(C)left⊗ (resp. N right = rad(C)right⊗ ). (5.52)
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As a consequence, the right (resp. left) tensor ideal of left (resp. right) negligible morphisms N left (resp. N right)
is the maximal proper right (resp. left) tensor ideal of C.

Proof. We will only prove the statements for right tensor ideals. The proof for left tensor ideals is identical
when considering the second equivalent definition of right negligible morphisms (5.49).

The result now follows from Example (34), Lemma 5.2.10, Proposition 5.3.4, and Proposition 5.3.5. The second
statement follows from Proposition 5.3.7. ■

Remark 5.3.13. The use of Proposition 5.3.4 obscures the equality of the tensor ideals N left and rad(C)left⊗ , it
is not immediately evident why one should expect these to be equal in general (although the above proof is
of course valid). However, working with all of the morphisms of rad(C)left⊗ explicitly, we see why this is the
case. Morphisms of rad(C)left⊗ (A,B) are of the form

f

B

A

for f : 1 → B ⊗A∗ ∈ rad(C)(1, B ⊗A∗), (5.53)

which means that for any g : B → A, we have

f

g

B

A

A

∈ rad(C)left⊗ (A,A). (5.54)

Taking the trace after composing with some a : A → A∗∗ results in

f

g

a

=

f

g

a

∈ rad(C)(1,1) = 0 because rad(C)(1,1) is a proper ideal in a field.

(5.55)

Remark 5.3.14. As a corollary of the above Proposition 5.3.12, we find that the tensor ideals of negligible
morphisms do not depend on the choice of pivotal structure (as tensor ideals are defined using only the
pre-additive monoidal structure).
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5.4 Properties of traces with regard to to an abelian structure

We now aim to work towards an intrinsic description of the morphisms lying in the maximal tensor ideals. To
achieve this for the tensor ideals of negligible morphisms, we need a deeper understanding of how monoidal
traces interact with the abelian structure.

By Proposition 5.2.5, it suffices to study the negligible morphisms between indecomposable objects. Further-
more, Proposition 5.1.9 tells us that endomorphisms of indecomposable objects are either isomorphisms or
nilpotent. Consequently, it is essential to understand the traces of nilpotent morphisms.

5.4.1 Additivity of the trace on short exact sequences

Before we can discuss the trace of a nilpotent morphism, we have to understand the behaviour of monoidal
traces on short exact sequences.

Lemma 5.4.1 ([Bra14, Lemma 3.1.20 (2)]). Let C be an abelian monoidal category such that the monoidal
product is biexact, and suppose that we have two short exact sequences

0 A B C 0

0 A′ B′ C ′ 0

f g

f ′ g′

. (5.56)

We have a short exact sequence

0 Im(f) B ⊗B′ C ⊗ C ′ 0
im(f) g⊗g′

, (5.57)

where f := (f⊗ idB′)◦projA⊗B′ +(idB⊗f ′)◦projB⊗A′ (Im(f) is hence a quotient of (A⊗B′)⊕(B⊗A′)).

Proof. We know that f, f ′ are monomorphisms, and that g, g′ are epimorphisms. As the monoidal product is
biexact, we then find that f⊗idX , idX⊗f ′ are monomorphisms, and that g⊗idX , idX⊗g′ are epimorphisms
for any X ∈ Ob (C). im(f) is trivially a monomorphism too, and g ⊗ g′ = (g ⊗ idC′) ◦ (idB ⊗ g′) is an
epimorphism.

The only thing left for us to prove is that g ⊗ g′ is a cokernel of im(f), or equivalently f .

Clearly, (g⊗g′)◦f = 0. Suppose now that h : B⊗B′ → X is such that h◦f = 0. Composing from the right
with incA⊗B′ and incB⊗A′ , we find h◦(f⊗ idB′) = 0 and h◦(idB⊗f ′) = 0. As g⊗ idB′ = coker(f⊗ idB′),
we find a unique h such that h ◦ (g ⊗ idB′) = h.

It is then easy to show that h◦(idB⊗f ′) = 0: g⊗idA′ is an epimorphism, and we thus find h◦(idB⊗f ′) = 0
if and only if h ◦ (g ⊗ f ′) = 0, but h ◦ (g ⊗ idB′) ◦ (idB ⊗ f ′) = h ◦ (idB ⊗ f ′) = 0.

As before, we can then find a unique h such that h ◦ (idB ⊗ g′) = h. We finally obtain h = h ◦ (g⊗ idB′) =
h ◦ (g ⊗ g′). As g ⊗ g′ is an epimorphism, h is unique with this property. ■

The proof of the following theorem was inspired by the proof of [GKP11, Lemma 2.5.1] (which was in turn
inspired by the very short proof of [Del07, Lemme 3.5]), but this is an element-free (and more general)
version.

Theorem 5.4.2 ([Del07, Lemme 3.5]). Let C be an abelian left rigid monoidal category such that the monoidal
product is bilinear and biexact (which is true if the category is also right rigid through Proposition 4.3.3) on
morphisms. Let

0 A B C 0

0 A∗∗ B∗∗ C∗∗ 0

f

a

g

b c

f∗∗ g∗∗

(5.58)
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be a morphism of short exact sequences in C (note that the second sequence is exact due to Corollary 3.4.9). We
have

trleft(b) = trleft(a) + trleft(c). (5.59)
Proof. As the left dualisation functor −∗ : Cdual → C is left exact (it is actually exact, Proposition 4.3.1), we
obtain a left exact sequence

0 C∗ B∗ A∗g∗ f∗

. (5.60)
This means that g∗ is a monomorphism, and that g∗ is a kernel of f∗.

For h : X → X in C, define ĥ : 1 → X ⊗X∗ as

ĥ
= h . (5.61)

We claim that there is a unique morphism inc : Im(̂b) → Ker(g∗∗ ⊗ f∗) such that the following diagram
commutes

1 B∗∗ ⊗B∗ Ker(g∗∗ ⊗ f∗)

Im(̂b)

b̂

coim(̂b)

ker(g∗∗⊗f∗)

im(̂b)
∃!inc

. (5.62)

For this, we use Lemma 3.5.3 to obtain

b

f∗g∗∗

= b

f

g∗∗

= f∗∗

a

g∗∗

= 0. (5.63)

As b̂ = im(̂b) ◦ coim(̂b), and coim(̂b) is an epimorphism, we then find that (g∗∗ ⊗ f∗) ◦ im(̂b) = 0. This
shows that inc does indeed exist, and is unique.

In the following diagram, αA, βA (resp. αC , βC ) are induced by ker(idC∗∗ ⊗ f∗) = idC∗∗ ⊗ g∗ (resp.
ker(g∗∗ ⊗ idA∗) = f∗∗ ⊗ idA∗ ). These dashed morphisms make the squares involving only one dashed
morphism commute. As f∗∗⊗ idA∗ and idC∗∗ ⊗g∗ are monomorphisms, the triangles involving two dashed
morphisms commute too. We conclude that the following diagram is commutative

A∗∗ ⊗A∗

B∗∗ ⊗A∗

1 Im(̂b) Ker(g∗∗ ⊗ f∗) B∗∗ ⊗B∗ C∗∗ ⊗A∗

C∗∗ ⊗B∗

C∗∗ ⊗ C∗

f∗∗⊗idA∗

g∗∗⊗idA∗

∃!βA

∃!βC

coim(̂b) inc ker(g∗∗⊗f∗)

∃!αA

∃!αC

g∗∗⊗f∗

idB∗∗⊗f∗

g∗∗⊗idB∗ idC∗∗⊗f∗

idC∗∗⊗g∗

. (5.64)
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Lemma 5.4.1 shows that Ker(g∗∗⊗f∗) is a quotient of (Ker(g∗∗)⊗B∗)⊕(B∗∗⊗Ker(f∗)) = (A∗∗⊗B∗)⊕
(B∗∗⊗C∗), and that ker(g∗∗⊗f∗) = im(ζ)with ζ = (f∗∗⊗idB∗)◦projA∗∗⊗B∗ +(idB∗∗⊗g∗)◦projB∗∗⊗C∗ .

We then find

(f∗∗ ⊗ idA∗) ◦ αA = (idB∗∗ ⊗ f∗) ◦ im(ζ) and (idC∗∗ ⊗ g∗) ◦ αC = (g∗∗ ⊗ idB∗) ◦ im(ζ), (5.65)

which implies that

αA ◦ coim(ζ) = (idA∗∗ ⊗ f∗) ◦ projA∗∗⊗B∗ and αC ◦ coim(ζ) = (g∗∗ ⊗ idC∗) ◦ projB∗∗⊗C∗ . (5.66)

Note that βA = â and βC = ĉ through Lemma 3.5.3 and (5.62)

a

f∗∗

=

f

b

=

b

f∗

and

c

g∗

=

g

c

=

b

g∗∗

. (5.67)

We then obtain
trleft(b) = evB∗ ◦ b̂

= evB∗ ◦ ker(g∗∗ ⊗ f∗) ◦ inc ◦ coim(̂b)

= evB∗ ◦ im(ζ) ◦ inc ◦ coim(̂b)

. (5.68)

We have

evB∗ ◦ im(ζ) ◦ coim(ζ) = evB∗ ◦ ((f∗∗ ⊗ idB∗) ◦ projA∗∗⊗B∗ +(idB∗∗ ⊗ g∗) ◦ projB∗∗⊗C∗)

= (evA∗ ◦ (idA∗∗ ⊗ f∗) ◦ projA∗∗⊗B∗ +evC∗ ◦ (g∗∗ ⊗ idC∗) ◦ projB∗∗⊗C∗)

= (evA∗ ◦ αA ◦ coim(ζ) + evC∗ ◦ αC ◦ coim(ζ))

= (evA∗ ◦ αA + evC∗ ◦ αC) ◦ coim(ζ)

,

(5.69)
where we used Lemma 3.5.3 and (5.66). We can thus conclude that evB∗ ◦ im(ζ) = evA∗ ◦ αA + evC∗ ◦ αC .

Plugging this into (5.68), and using the commutativity of (5.64), gives

trleft(b) = (evA∗ ◦ αA + evC∗ ◦ αC) ◦ inc ◦ coim(̂b)

= evA∗ ◦ βA + evC∗ ◦ βC

= evA∗ ◦ â+ evC∗ ◦ ĉ
= trleft(a) + trleft(c)

. (5.70)

■

5.4.2 Nilpotent morphisms have trace zero

Using the above result on the additivity of traces over short exact sequences, we can prove that the trace of a
nilpotent endomorphism is zero. We will not prove this in full generality at this point (a complete treatment
is deferred to Proposition 5.5.8), but we will follow the standard approach found in the literature.

Corollary 5.4.3 ([Del07, Corollaire 3.6]). Let C be an abelian pivotal category (with pivotal structureα) such
that the monoidal product is bilinear on morphisms (and thus biexact through Proposition 4.3.3), let A ∈ Ob (C)
be an object, and let f : A → A be an endomorphism.

If f is nilpotent, i.e. if there exists k such that fk = 0, then trleft(αA ◦ f) = 0.
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Proof. As coker(fn) ◦ fn+1 = 0, we find coker(fn) ◦ im(fn+1) = 0 and coker(fn) ◦ f ◦ im(fn) = 0, which
implies that there are uniquely induced morphisms in : Im(fn+1) → Im(fn) and fn : Im(fn) → Im(fn)
such that im(fn) ◦ in = im(fn+1) and im(fn) ◦ fn = f ◦ im(fn). Similarly, coker(fn+1) ◦ fn+1 = 0
implies that coker(fn+1) ◦ f ◦ im(fn) = 0, which implies that there is a uniquely induced morphism
αn : Im(fn) → Im(fn+1) such that im(fn+1) ◦ αn = f ◦ im(fn). For these morphisms, we have

im(fn) ◦ fn ◦ in = f ◦ im(fn) ◦ in
= f ◦ im(fn+1)

= im(fn+1) ◦ fn+1

= im(fn) ◦ in ◦ fn+1

, (5.71)

im(fn) ◦ in ◦ αn = im(fn+1) ◦ αn = f ◦ im(fn) = im(fn) ◦ fn, (5.72)
im(fn+1) ◦ αn ◦ in = f ◦ im(fn) ◦ in

= f ◦ im(fn+1)

= im(fn+1) ◦ fn+1

. (5.73)

We thus conclude that the following diagram commutes

· · · Im(f4) Im(f3) Im(f2) Im(f) A

· · · Im(f4) Im(f3) Im(f2) Im(f) A

i4

f4

i3

α4

i2

f3
α3

f2

i1

α2
f1

i0

α1 f
α0

i4 i3 i2 i1 i0

. (5.74)

For each n, this commutative diagram induces morphisms of short exact sequences

0 Im(fn+1) Im(fn) Coker(in) 0

0 Im(fn+1) Im(fn) Coker(in) 0

0 Im(fn+1)∗∗ Im(fn)∗∗ Coker(in)
∗∗ 0

fn+1

in coker(in)

fn ∃!

in

αIm(fn+1)

coker(in)

αIm(fn) αCoker(in)

in
∗∗ coker(in)

∗∗

, (5.75)

where the top right uniquely induced morphism is zero as coker(in) ◦ fn = coker(in) ◦ in ◦ αn = 0.

Theorem 5.4.2 now implies that trleft(αIm(fn) ◦ fn) = trleft(αIm(fn+1) ◦ fn+1), from which we conclude

trleft(αA ◦ f) = trleft(αIm(fk) ◦ fk) = trleft(0) = 0. (5.76)

■

5.5 Classification of the morphisms in the maximal tensor ideals

In this section, we provide intrinsic descriptions of the morphisms in the maximal tensor ideals. We begin
with the setting of pivotal categories commonly found in the literature, and then move on to the more general
setting of possibly non-pivotal tensor categories.

Remark 5.5.1. In the literature (see, for example, [EO21a]), these results are typically stated for symmetric
categories. However, Theorem 3.6.11 and Corollary 3.6.12 show that symmetric categories are pivotal and
spherical. This implies that the results for symmetric categories follow as special cases of our more general
discussion for pivotal categories.
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5.5.1 Classification of negligible morphisms

The statements (and their proof) in this subsection are based on the statement and proof of [EO21a, Lemma 2.2].

Lemma 5.5.2. Let C be a Karoubian category, and let A,B ∈ Ob (C) be objects such that A (resp. B)
is indecomposable. If a morphism f : A → B is not an isomorphism, then for any C ∈ Ob (C) and any
g : C → A (resp. g : B → C), f ◦ g (resp. g ◦ f ) is not an isomorphism either.

Proof. If f ◦ g (resp. g ◦ f ) is an isomorphism, then f is a split epimorphism from an indecomposable object
(resp. a split monomorphism into an indecomposable object).

Proposition 2.2.5 now shows that A is decomposable, which is a contradiction. ■

Proposition 5.5.3 ([EO21a, Lemma 2.2]). Let C be an abelian pivotal category such that the monoidal
product is bilinear on morphisms, and let A,B ∈ Ob (C) be indecomposable objects.

1. We have

{f : A → B | f not invertible} ⊆ N left(A,B) ⊆
{f : A → B | dimleft(A) = 0 or f not invertible}
{f : A → B | dimleft(B) = 0 or f not invertible}

,

(5.77)

{f : A → B | f not invertible} ⊆ N right(A,B) ⊆
{f : A → B | dimright(A) = 0 or f not invertible}
{f : A → B | dimright(B) = 0 or f not invertible}

.

(5.78)

2. If C is, in addition, VectK-enriched, with K some algebraically closed field, then we obtain

N left(A,B) =
{f : A → B | dimleft(A) = 0 or f is not invertible}
{f : A → B | dimleft(B) = 0 or f is not invertible}

, (5.79)

N right(A,B) =
{f : A → B | dimright(A) = 0 or f not invertible}
{f : A → B | dimright(B) = 0 or f not invertible}

. (5.80)

Proof. We will only prove the statements for left negligible morphisms, the proof for right negligible mor-
phisms is analogous.

For the first inclusion, we use Lemma 5.5.2 to find that g◦f is not an isomorphism if f is not an isomorphism,
hence that g ◦ f is nilpotent through Proposition 5.1.9, which implies that trleft(αA ◦ g ◦ f) = 0 through
Corollary 5.4.3.

For the second inclusion, suppose that f ∈ N left(A,B) is an isomorphism. This then implies that dimleft(A) =
trleft(αA ◦ f−1 ◦ f) = 0 and dimleft(B) = trleft(αB ◦ f ◦ f−1) = 0 (through the equivalent definitions for
left negligible morphisms).

Suppose now that C is VectK-enriched, with K some algebraically closed field. For any f : A → B and
g : B → A, Corollary 5.1.11 states that g ◦ f = λgidA + h for some λg ∈ K and some nilpotent morphism
h : A → A. As a consequence, we find that trleft(αA ◦ g ◦ f) = λg dim

left(A) = 0 (resp. trleft(αB ◦ f ◦ g) =
λ dimleft(B) = 0) if and only if either dimleft(A) = 0 (resp. dimleft(B) = 0), or if λg = 0. If f is an
isomorphism, then λf−1 = 1 ̸= 0, which implies that f ∈ N left(A,B) if and only if dimleft(A) = 0. ■

Corollary 5.5.4. Let C be an abelian pivotal category such that the monoidal product is bilinear on morphisms,
and let A,B ∈ Ob (C) be objects of finite length with (unique due to the Krull-Schmidt theorem 2.4.4) decom-
positions into indecomposable objects A =

⊕
k Ak and B =

⊕
ℓ Bℓ. For morphisms f : A → B, this implies

that we have decompositions f =
⊕

k,ℓ fkℓ with fkℓ = projBℓ
◦f ◦ incAk

: Ak → Bℓ.
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1. We have

N left(A,B) ⊆
{f : A → B | (∀k, ℓ)(dimleft(Ak) = 0 or fkℓ not invertible)}
{f : A → B | (∀k, ℓ)(dimleft(Bℓ) = 0 or fkℓ not invertible)}

, (5.81)

N right(A,B) ⊆
{f : A → B | (∀k, ℓ)(dimright(Ak) = 0 or fkℓ not invertible)}
{f : A → B | (∀k, ℓ)(dimright(Bℓ) = 0 or fkℓ not invertible)}

. (5.82)

2. If C is, in addition, VectK-enriched, with K some algebraically closed field, then the above inclusions
become equalities

N left(A,B) =
{f : A → B | (∀k, ℓ)(dimleft(Ak) = 0 or fkℓ not invertible)}
{f : A → B | (∀k, ℓ)(dimleft(Bℓ) = 0 or fkℓ not invertible)}

, (5.83)

N right(A,B) =
{f : A → B | (∀k, ℓ)(dimright(Ak) = 0 or fkℓ not invertible)}
{f : A → B | (∀k, ℓ)(dimright(Bℓ) = 0 or fkℓ not invertible)}

. (5.84)

Proof. This follows from Proposition 5.2.5 and Proposition 5.5.3. ■

5.5.2 Classification of radical morphisms in non-pivotal categories

Inspired by the above, we want to give a similar classification of morphisms in rad(C)left⊗ and rad(C)right⊗ ,
which we call left or right radical morphisms. Ideally, one that works when we are not working over alge-
braically closed fields too.

First, we want to get rid of the pivotal structure, and work directly with morphisms A → A∗∗. Note that,
in rigid categories, −∗∗ is an equivalence, which implies that A∗∗ is indecomposable if A is. This already
equips us with some of the important tools used in the above (e.g. Lemma 5.5.2).

Another important tool we wish to use is Proposition 5.1.9. To apply this result in our context, we must first
make sense of nilpotent morphisms to double duals.

Definition 5.5.5 (Nilpotent morphisms to double duals). Let C be a left (resp. right) rigid monoidal
and pre-additive category, and let A ∈ Ob (C) be an object. For any morphism f : A → A∗∗ (resp. any
morphism f : A → ∗∗A), and any n, we define f (0) := idA and f (n) := f ((n−1)∗∗)◦f ((n−2)∗∗)◦· · ·◦f∗∗◦f :
A → A(n∗∗) (resp. (0)f := idA and (n)f := ((n−1)∗∗)f ◦ ((n−2)∗∗)f ◦ · · · ◦ ∗∗f ◦ f : A → (n∗∗)A). f is called
nilpotent if there exists k such that f (k) = 0 (resp. (k)f = 0).

Remark 5.5.6. This is just the notion of nilpotence introduced in Definition 5.1.5 applied to F = −∗∗, ∗∗−.

Proposition 5.5.7. Let C be an abelian rigid monoidal category such that the monoidal product is bilinear on
morphisms, let A ∈ Ob (C) be an indecomposable object of finite length, and let f : A → A∗∗ be a morphism.
Then either f is an isomorphism, or f is nilpotent.

Proof. This follows by setting F = −∗∗ in Proposition 5.1.8. ■

Even though we are no longer considering negligible morphisms, the trace will still play a role in our classi-
fication of radical morphisms. We therefore seek a slight generalisation of Corollary 5.4.3.

Proposition 5.5.8. Let C be an abelian rigid monoidal category such that the monoidal product is bilinear on
morphisms, let A ∈ Ob (C) be an object, and let f : A → A∗∗ be a morphism. If f is nilpotent, in the sense that
there exists some k such that f (k) = 0, then trleft(f) = 0.
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Proof. As in the proof of Corollary 5.4.3, we have a commutative diagram

· · · Im(4∗∗f (4)) Im(3∗∗f (3)) Im(2∗∗f (2)) Im(∗∗f) A

· · · Im(3∗∗f (4)) Im(2∗∗f (3)) Im(∗∗f (2)) Im(f) A∗∗

∗∗i4

f4

∗∗i3

α4

∗∗i2

f3
α3

f2

∗∗i1

α2
f1

∗∗i0

α1
f

α0

i4 i3 i2 i1 i0

. (5.85)

1. We have coker(((n−1)∗∗)f (n)) ◦ (n∗∗)f (n+1) = 0, which implies that also coker(((n−1)∗∗)f (n)) ◦
im((n∗∗)f (n+1)) = 0. We thus find a uniquely induced in : Im((n∗∗)f (n+1)) → Im(((n−1)∗∗)f (n))
such that

im(((n−1)∗∗)f (n)) ◦ in = im((n∗∗)f (n+1)). (5.86)

2. Similarly, we have coker((n∗∗)f (n+1)) ◦ (n∗∗)f (n+1) = 0, which implies that coker((n∗∗)f (n+1)) ◦ f ◦
im((n∗∗)f (n)) = 0. This induces a unique morphism αn : Im((n∗∗)f (n)) → Im((n∗∗)f (n+1)) such that

im((n∗∗)f (n+1)) ◦ αn = f ◦ im((n∗∗)f (n)). (5.87)

3. Finally, we have coker(((n−1)∗∗)f (n))◦ (n∗∗)f (n+1) = 0, which implies that coker(((n−1)∗∗)f (n))◦ f ◦
im((n∗∗)f (n)) = 0. This induces a unique morphism fn : Im((n∗∗)f (n)) → Im(((n−1)∗∗)f (n)) such
that

im(((n−1)∗∗)f (n)) ◦ fn = f ◦ im((n∗∗)f (n)). (5.88)

The diagram (5.85) commutes as

1.
im(((n−1)∗∗)f (n)) ◦ fn ◦ ∗∗in = f ◦ im((n∗∗)f (n)) ◦ ∗∗in

= f ◦ im(((n+1)∗∗)f (n+1))

= im((n∗∗)f (n+1)) ◦ fn+1

= im((n−1)∗∗f (n)) ◦ in ◦ fn+1

, (5.89)

which implies that fn ◦ ∗∗in = in ◦ fn+1,

2.
im((n−1)∗∗f (n)) ◦ in ◦ αn = im((n∗∗)f (n+1)) ◦ αn

= f ◦ im((n∗∗)f (n))

= im(((n−1)∗∗)f (n)) ◦ fn

, (5.90)

which implies that in ◦ αn = fn,

3.
im((n∗∗)f (n+1)) ◦ αn ◦ ∗∗in = f ◦ im(n∗∗f (n)) ◦ ∗∗in

= f ◦ im(((n+1)∗∗)f (n+1))

= im((n∗∗)f (n+1)) ◦ fn+1

, (5.91)

which implies that αn ◦ ∗∗in = fn+1.

For every n, this then induces a morphism of short exact sequences

0 Im(((n+1)∗∗)f (n+1)) Im((n∗∗)f (n)) Coker(∗∗in) 0

0 Im(((n∗∗)f (n+1)) Im(((n−1)∗∗)f (n)) Coker(in) 0

∗∗in

fn+1

coker(∗∗in)

fn ∃!

in coker(in)

, (5.92)

where the uniquely induced morphism Coker(∗∗in) → Coker(in) is zero as coker(in) ◦ fn = coker(in) ◦
in ◦ αn = 0.
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Theorem 5.4.2 then implies that trleft(fn) = trleft(fn+1) for all n, and thus that

trleft(f) = trleft(fk) = 0. (5.93)

■

Remark 5.5.9. Proposition 5.5.8 implies Corollary 5.4.3 by setting f := αA ◦ f there (as then f (n) =(
α
((n−1)∗∗)
A

)n

◦ fn = 0 if and only if fn = 0).

We are now ready to prove a classification of left and right radical morphisms, which is very similar to
Proposition 5.5.3.

Proposition 5.5.10. Let C be an abelian rigid monoidal category such that the monoidal product is bilinear on
morphisms, and let A,B ∈ Ob (C) be indecomposable objects.

rad(C)left⊗ (A,B) =

{
f : A → B

∣∣∣∣f not invertible or (∀a : A → A∗∗)
(
id1 − trleft(a) invertible

)}
(5.94)

=

{
f : A → B

∣∣∣∣f not invertible or (∀b : B → B∗∗)
(
id1 − trleft(b) invertible

)}
,

(5.95)

rad(C)right⊗ (A,B) =

{
f : A → B

∣∣∣∣f not invertible or (∀a : A → ∗∗A)
(
id1 − trright(a) invertible

)}
(5.96)

=

{
f : A → B

∣∣∣∣f not invertible or (∀b : B → ∗∗B)
(
id1 − trright(b) invertible

)}
.

(5.97)

Proof. We will only prove the first equality, the proofs for the other equalities are similar.

Let us first prove that rad(C)left⊗ (A,B) is included in the set on the right. Suppose that f ∈ rad(C)left⊗ (A,B),
and that f is invertible. As f̂ = (f ⊗ idA∗) ◦ coevA ∈ rad(C)left⊗ (1, B ⊗A∗) = rad(C)(1, B ⊗A∗), we find
that

id1 −
f

h

is invertible for any h : B ⊗A∗ → 1. (5.98)

Setting, for arbitrary a : A → A∗∗

h

B A∗

:=

f−1

a

B

A

A∗

, (5.99)
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we find that

id1 − a is invertible. (5.100)

For the other inclusion, suppose that f : A → B is not invertible. Using Lemma 5.5.2, we know that g ◦ f is
not invertible for any g : B → A∗∗, and thus that g◦f is nilpotent through Proposition 5.5.7. Proposition 5.5.8
then implies that trleft(g ◦ f) = 0. Let h : B ⊗A∗ → 1 be any morphism, then

id1 −
f

h

= id1 − f

h

= id1 is invertible. (5.101)

We conclude that f̂ ∈ rad(C)(1, B ⊗A∗) = rad(C)left⊗ (1, B ⊗A∗), and thus that f ∈ rad(C)left⊗ (A,B).

Suppose now that A is such that for any a : A → A∗∗ (5.100) holds. For any h : B ⊗A∗ → 1, we then find
that (5.98) holds by setting

a :=

f

h

. (5.102)

Once again, this implies that f̂ ∈ rad(C)(1, B⊗A∗) = rad(C)left⊗ (1, B⊗A∗), and thus that f ∈ rad(C)left⊗ (A,B).
■

Corollary 5.5.11. Let C be an abelian rigid monoidal category such that the monoidal product is bilinear on
morphisms, and letA,B ∈ Ob (C) be objects of finite length with (unique due to the Krull-Schmidt theorem 2.4.4)
decompositions into indecomposable objects A =

⊕
k Ak and B =

⊕
ℓ Bℓ. For morphisms f : A → B, this
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implies that we have decompositions f =
⊕

k,ℓ fkℓ with fkℓ = projBℓ
◦f ◦ incAk

: Ak → Bℓ. We have

rad(C)left⊗ (A,B) =

f : A → B

∣∣∣∣∣(∀k, ℓ)
(
fkℓ not invertible or (∀a : Ak → Ak

∗∗)
(
id1 − trleft(a) invertible

))
(5.103)

=

f : A → B

∣∣∣∣∣(∀k, ℓ)
(
fkℓ not invertible or (∀b : Bℓ → Bℓ

∗∗)
(
id1 − trleft(b) invertible

)) ,

(5.104)

rad(C)right⊗ (A,B) =

f : A → B

∣∣∣∣∣(∀k, ℓ)
(
fkℓ not invertible or (∀a : Ak → ∗∗Ak)

(
id1 − trright(a) invertible

))
(5.105)

=

f : A → B

∣∣∣∣∣(∀k, ℓ)
(
fkℓ not invertible or (∀b : Bℓ → ∗∗Bℓ)

(
id1 − trright(b) invertible

)) .

(5.106)

Proof. This follows from Proposition 5.2.5 and Proposition 5.5.10. ■

5.6 The structure of the quotient of a tensor category over its
maximal tensor ideal

We are now finally ready to finish what we started in Proposition 5.3.7; we will show that the quotient of C
by the maximal tensor ideal is semisimple.

Theorem 5.6.1. Let C be an abelian rigid monoidal category such that the monoidal product is bilinear on
morphisms and such that every object has a decomposition into indecomposable objects. Let rad(C)left⊗ ≤ C and
rad(C)right⊗ ≤ C be the maximal right and let tensor ideals respectively. The quotient categories C/rad(C)left⊗
and C/rad(C)right⊗ are semisimple and Schur (and thus abelian through Proposition 5.2.21).

The non-zero simple objects in C/rad(C)left⊗ or C/rad(C)right⊗ are the images of the objects A ∈ Ob (C) such that
the following do not hold

(∀a : A → A∗∗)
(
id1 − trleft(a) invertible

)
or (∀a : A → ∗∗A)

(
id1 − trright(a) invertible

)
, (5.107)

or equivalently when HomC(1,1) is a field

(∀a : A → A∗∗)
(
trleft(a) = 0

)
or (∀a : A → ∗∗A)

(
trright(a) = 0

)
. (5.108)

Proof. Proposition 5.2.6 shows that the indecomposables of C/rad(C)left⊗ are the images of the indecompos-
ables in C under the canonical quotient functor. We will now show that these are simple objects.

Let A ∈ Ob (C) be an indecomposable object. If the first condition in (5.107) holds, then we see that
rad(C)left⊗ (A,B) = HomC(A,B) and rad(C)left⊗ (B,A) = HomC(B,A) for allB ∈ Ob (C) (Corollary 5.5.11).
We conclude that quotrad(C)left⊗

(A) is a null object. If that condition does not hold, then Proposition 5.5.10
shows that rad(C)left⊗ (A,A) ̸= HomC(A,A) as idA ̸∈ rad(C)left⊗ (A,A). This implies that quotrad(C)left⊗

(A)

is not a null object.

Suppose now thatA,B ∈ Ob (C) are two indecomposable objects such that quotrad(C)left⊗
(A), quotrad(C)left⊗

(B)

are not null objects. Proposition 5.5.10 then shows that rad(C)left⊗ (A,B) consists of the non-invertible mor-
phisms f : A → B. This shows that HomC/rad(C)left⊗

(
quotrad(C)left⊗

(A), quotrad(C)left⊗
(B)

)
is zero when

A ≁= B, and a division ring if A ∼= B. We conclude that C/rad(C)left⊗ is Schur.
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Let X ∈ Ob
(
C/rad(C)left⊗

)
be an indecomposable object, and suppose that it has a subobject Y . Without

loss of generality we may assume that Y is indecomposable too. Due to the above, we find that the monomor-
phism f : Y → X is either zero or an isomorphism, and thus that Y is a null object or isomorphic to X . We
conclude that X is simple, and thus that C/rad(C)left⊗ is semisimple.

We will now show that (5.108) is equivalent to (5.107) when HomC(1,1) is a field. If ζ := trleft(a) =
evA∗ ◦ (a⊗ idA∗) ◦ coevA ̸= 0, then ζ is an isomorphism. Through Proposition 4.1.2, we then find

trleft(ζ−1 · a) = evA∗ ◦ ((ζ−1 · a)⊗ idA∗) ◦ coevA
= evA∗ ◦ (ζ−1 · (a⊗ idA∗)) ◦ coevA
= ζ−1 · (evA∗ ◦ (a⊗ idA∗) ◦ coevA)
= id1

. (5.109)

This is in contradiction with the fact that id1 − trleft(ζ−1 · a) must be invertible. ■

Remark 5.6.2. Note that at no point in the above proof did we assume that the monoidal product is bilinear
with respect to the left or right action on the hom-sets defined by HomC(1,1).

Remark 5.6.3. Theorem 5.6.1 shows that we have semisimplifications in the sense of Definition 5.0.2, with
Struct = abelian rigid monoidal categories such that the monoidal product is bilinear and such that all
objects have decompositions into indecomposable objects, M = Ab, and BinOp = {◦,⊗}. In particular,
this works for all multitensor categories over rings in which every object has a decomposition into indecom-
posable objects.

Indeed, if I ≤ C is a right or left tensor ideal such that C/I is semisimple and Schur, then rad(C) ⊆ I due
to Corollary 5.2.18. Remark 5.3.6 then implies that rad(C)left⊗ ⊆ I or rad(C)right⊗ ⊆ I .

Furthermore, if HomC(1,1) is a field (e.g. when C is a tensor category), then Proposition 5.3.7 implies that
the only non-zero quotient of C over a right or left tensor ideal is exactly C/rad(C)left⊗ or C/rad(C)right⊗ .
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6 Algebras in Monoidal Categories

This chapter is devoted to the study of algebras in monoidal and symmetric tensor categories. We begin
with a general treatment in the setting of monoidal categories and gradually introduce additional structures,
allowing us to develop more intricate concepts.

While most of the existing literature focuses on unital associative algebras (see, for example, [EGNO15;
Cou23a; Cou23b]), our approach is fully general: we make no assumptions of associativity or the existence
of a unit. This broader perspective includes classical examples but also accommodates more exotic structures
that arise naturally in settings such as the Verlinde category, where non-associative algebras can play a
central role.

A new contribution of this chapter is a construction of the ideal generated by a subobject in a non-associative
algebra. To the best of our knowledge, this construction does not appear in the existing literature.

6.1 Magmas and monoids in monoidal categories

6.1.1 Magmas and monoids

Over a commutative ring R, an algebra is a pair (A,µ), where A is an R-module and µ : A × A → A is a
bilinear map. Equivalently, by the universal property of the tensor product of modules, this is a morphism
µ : A⊗R A → A in the category RMod.

This notion admits a natural generalisation to arbitrary monoidal categories. In monoidal categories that are
not pre-additive, we will refer to such structures not as algebras, but as magmas.

Definition 6.1.1 ((Co)magmas and (co)monoids, [EGNO15, Definition 7.8.1]). Let (C,⊗,1, α, λ, ρ) be
a monoidal category. A magma in C is a pair (A,µ) of an object A ∈ Ob (C), and a morphism µ : A⊗A → A,
called the multiplication.

In the graphical calculus of string diagrams, we draw multiplications as

µ =
A

A

A
. (6.1)

A magma (A,µ) is called

1. associative if the following diagram commutes

(A⊗A)⊗A A⊗A

A

A⊗ (A⊗A) A⊗A

α(A,A,A)

µ⊗idA

µ

idA⊗µ
µ

, (6.2)
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6 Algebras in Monoidal Categories

or graphically
A A

A

A

=

A

A AA

, (6.3)

2. unital if there exists a morphism η : 1 → A such that the following diagram commutes

1⊗A A⊗A A⊗ 1

A

η⊗idA

λA

µ

idA⊗η

ρA

, (6.4)

or graphically

η

A

A

=

A

A

=
η

A

A

, (6.5)

note that this implies that µ is a split epimorphism,

3. commutative (or anti-commutative1) if, in addition, C is equipped with a braiding γ, and µ◦γ(A,A) = µ
(or µ ◦ γ(A,A) = −µ). Graphically, this is

AA

A

=

A A

A

. (6.6)

A unital and associative magma is called a monoid.

Dually, a comagma is a pair (A,µ) of an object A ∈ Ob (C), and a morphism µ : A → A ⊗ A, called the
comultiplication.

Graphically, we draw comultiplications as

µ =
A

A A

. (6.7)

A comagma (A,µ) is called

1. coassociative if the following diagram commutes

A⊗A (A⊗A)⊗A

A

A⊗A A⊗ (A⊗A)

µ⊗idA

α(A,A,A)

µ

µ
idA⊗µ

, (6.8)

1The category needs to be pre-additive for this to make sense.
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or graphically
A

A A A

=

A

A AA

, (6.9)

2. counital if there exists a morphism η : A → 1 such that the following diagram commutes

A

1⊗A A⊗A A⊗ 1

µ
λA

η⊗idA idA⊗η

ρA , (6.10)

or graphically

η

A

A

=

A

A

=
η

A

A

, (6.11)

3. cocommutative (or anti-cocommutative) if, in addition, C is equipped with a braiding γ, and γ(A,A)◦µ =
µ (or γ(A,A) ◦ µ = −µ). Graphically, this is

A

A A

=

A

AA

(6.12)

A counital and coassociative comagma is called a comonoid.

Example 41. In the strict monoidal category (Set,×, {⋆}) equipped with the swap map (associative, unital,
commutative, anti-commutative) magmas are (associative, unital, commutative, anti-commutative) magmas
in the usual sense.

Definition 6.1.2 (Morphisms between (co)magmas and (co)monoids). Let (C,⊗,1, α, λ, ρ) be a monoidal
category. We have the following notions of morphisms between magmas.

1. Let (A,µ) and (B, ν) be two magmas in C. A magma morphism (A,µ) → (B, ν) is a morphism
f : A → B in C such that the following diagram commutes

A⊗A B ⊗B

A B

µ

f⊗f

ν

f

. (6.13)

Graphically, this is

f f

A A

B

=
f

B

A A

. (6.14)
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2. Let (A,µ, η) and (B, ν, θ) be two unital magmas in C. A unital magma morphism (A,µ, η) → (B, ν, θ)
is a magma morphism f : (A,µ) → (B, ν) such that f ◦ η = θ.

These morphisms define categories MagmaC and UnitMagmaC of all magmas and all unital magmas in
C. We can then define categories of associative, commutative, anti-commutative, . . .magmas as full subcate-
gories of MagmaC . Similarly we define categories of unital associative, commutative, anti-commutative, . . .
magmas as full subcategories of UnitMagmaC . In particular, AssCommUnitMagmaC is the category
of commutative monoids in C.

Dually, we have the following notions of morphisms between comagmas.

1. Let (A,µ) and (B, ν) be two comagmas in C. A comagma morphism (A,µ) → (B, ν) is a morphism
f : A → B in C such that the following diagram commutes

A B

A⊗A B ⊗B

f

µ ν

f⊗f

. (6.15)

Graphically, this is

f f

B B

A

= f

A

B B

. (6.16)

2. Let (A,µ, η) and (B, ν, θ) be two counital comagmas in C. A counital comagma morphism (A,µ, η) →
(B, ν, θ) is a comagma morphism f : (A,µ) → (B, ν) such that θ ◦ f = η.

These morphisms define categories of coassociative, cocommutative, anti-cocommutative, . . . comagmas as
full subcategories of the category of comagmas ComagmaC , and categories of counital coassociative, co-
commutative, anti-cocommutative, . . . comagmas as full subcategories of the category of counital comagmas
CounitComagmaC .

Example 42 (Monoidal product of magmas). Suppose that, in addition, C is equipped with a braiding
γ. Provided with two magmas (A,µ) and (B, ν) in C, we can define the monoidal product magma (A,µ) ⊗
(B, ν) = (A⊗B,µν) through

µν = (µ⊗ ν) ◦ (idA ⊗ γ(B,A) ⊗ idB). (6.17)

Suppose that we have magma morphisms σ : (A1, µ1) → (A2, µ2) and τ : (B1, ν1) → (B2, ν2). The
monoidal product σ ⊗ τ in C then becomes a morphism (A1, µ1)⊗ (B1, ν1) → (A2, µ2)⊗ (B2, ν2), as

(σ ⊗ τ) ◦ (µ1 ⊗ ν1) ◦ (idA1 ⊗ γ(B1,A1) ⊗ idB1) = (µ2 ⊗ ν2) ◦ (σ ⊗ σ ⊗ τ ⊗ τ) ◦ (idA1 ⊗ γ(B1,A1) ⊗ idB1)

= (µ2 ⊗ ν2) ◦ (idA2 ⊗ γ(B2,A2) ⊗ idB2) ◦ (σ ⊗ τ ⊗ σ ⊗ τ)
.

(6.18)

6.1.2 Actions and modules of magmas

We can also generalise the notions of modules over algebras in the monoidal setting.

Definition 6.1.3 ((Co)actions of (co)magmas on objects, [EGNO15, Definition 7.8.5]). Let (C,⊗,1, α, λ, ρ)
be a monoidal category, and let X ∈ Ob (C).

1. Let (A,µ) be an associative magma.
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a) A left action of (A,µ) on X is a morphism ▷ : A ⊗ X → X such that the following diagram
commutes

(A⊗A)⊗X A⊗X

X

A⊗ (A⊗X) A⊗X

µ⊗idX

α(A,A,X)

▷

idA⊗▷
▷

. (6.19)

The pair (X, ▷) is called a left module over (A,µ).

Graphically, we draw

▷ =
A X

X

, (6.20)

and the compatibility constraint (6.19) then becomes

A A

X

X

=

X

A XA

. (6.21)

b) A right action of (A,µ) on X is a morphism ◁ : X ⊗ A → X such that the following diagram
commutes

X ⊗ (A⊗A) X ⊗A

X

(X ⊗A)⊗A X ⊗A

idX⊗µ

◁

◁⊗idA

α(X,A,A)

◁

. (6.22)

The pair (X, ◁) is called a right module over (A,µ).

The graphical language for right actions is the same as for left actions after reflecting over the
vertical axis.

2. Let (A,µ, η) be an associative unital magma.

a) A left action of (A,µ, η) on X is a left action ▷ : A⊗X → X of (A,µ) on X such that ▷ ◦ (η ⊗
idX) = λX . Graphically, this is

η

X

X

=

X

X

. (6.23)

b) A right action of (A,µ, η) on X is a right action ◁ : X ⊗ A → X of (A,µ) on X such that
◁ ◦ (idX ⊗ η) = ρX .

Dually, we have the following notions.

1. Let (A,µ) be a coassociative comagma.
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a) A left coaction of (A,µ) on X is a morphism ▷ : X → A ⊗X such that the following diagram
commutes

A⊗X (A⊗A)⊗X

X

A⊗X A⊗ (A⊗X)

µ⊗idX

α(A,A,X)

▷

▷
idA⊗▷

. (6.24)

The pair (X, ▷) is called a left comodule over (A,µ).

Graphically, we draw

▷ =
X

A X

, (6.25)

and the compatibility constraint (6.24) then becomes

X

A A X

=

X

A XA

. (6.26)

b) A right coaction of (A,µ) on X is a morphism ◁ : X → X ⊗ A such that the following diagram
commutes

X ⊗A X ⊗ (A⊗A)

X

X ⊗A (X ⊗A)⊗A

idX⊗µ

◁

◁
◁⊗idA

α(X,A,A) . (6.27)

The pair (X, ◁) is called a right comodule over (A,µ).

The graphical language for right coactions is the same as for left coactions after reflecting over
the vertical axis.

2. Let (A,µ, η) be a coassociative counital comagma.

a) A left coaction of (A,µ, η) on X is a left coaction ▷ : X → A ⊗ X of (A,µ) on X such that
(η ⊗ idX) ◦ ▷ = λ−1

X . Graphically, this is

η

X

X

=

X

X

. (6.28)

b) A right coaction of (A,µ, η) on X is a right coaction ◁ : X → X ⊗ A of (A,µ) on X such that
(idX ⊗ η) ◦ ◁ = ρ−1

X .

Definition 6.1.4 (Morphisms between (co)modules). Let (C,⊗,1, α, λ, ρ) be a monoidal category.

1. Let (A,µ) be an associative magma, possibly unital.
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a) Let (X, ▷X), (Y, ▷Y ) be two left modules over (A,µ). A module morphism (X, ▷X) → (Y, ▷Y ) is
a morphism f : X → Y in C such that the following diagram commutes

A⊗X A⊗ Y

X Y

▷X

idA⊗f

▷Y

f

. (6.29)

Graphically, this is

f

A X

Y

=
f

Y

A X

. (6.30)

b) Let (X, ◁X), (Y, ◁Y ) be two right modules over (A,µ). A module morphism (X, ◁X) → (Y, ◁Y )
is a morphism f : X → Y in C such that the following diagram commutes

X ⊗A Y ⊗A

X Y

◁X

f⊗idA

◁Y

f

. (6.31)

These morphisms define categories (A,µ)Mod and Mod(A,µ) of left and right modules respectively.

2. Let (A,µ) be a coassociative comagma, possibly counital.

a) Let (X, ▷X), (Y, ▷Y ) be two left comodules over (A,µ). A comodule morphism (X, ▷X) →
(Y, ▷Y ) is a morphism f : X → Y in C such that the following diagram commutes

X Y

A⊗X A⊗ Y

f

▷X ▷Y

idA⊗f

. (6.32)

Graphically, this is

f

X

A Y

= f

X

A Y

. (6.33)

b) Let (X, ◁X), (Y, ◁Y ) be two right comodules over (A,µ). A comodule morphism (X, ◁X) →
(Y, ◁Y ) is a morphism f : X → Y in C such that the following diagram commutes

X Y

X ⊗A Y ⊗A

f

◁X ◁Y

f⊗idA

. (6.34)

These morphisms define categories (A,µ)Comod and Comod(A,µ) of left and right comodules re-
spectively.
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6.1.3 Ideals in magmas

Finally, we generalise ideals in algebras to the monoidal setting.

Definition 6.1.5 ((Co)ideals in (co)magmas, [Ven23, Definition 2.7.1]). Let (C,⊗,1, α, λ, ρ) be a monoidal
category.

1. Let (A,µ) be a magma in C.

a) A left ideal in (A,µ) is a pair (I, i) of an object I ∈ Ob (C), together with a monomorphism i :
I → A which induces a (necessarily unique, as i is a monomorphism) morphism µI : A⊗ I → I
making the following diagram commute

A⊗ I A⊗A A

I
∃!µI

idA⊗i µ

i
. (6.35)

b) A right ideal in (A,µ) is a pair (I, i) of an object I ∈ Ob (C), together with a monomorphism
i : I → A which induces a (necessarily unique) morphism µI : A⊗ I → I making the following
diagram commute

I ⊗A A⊗A A

I
∃!µI

i⊗idA µ

i
. (6.36)

c) A (double) ideal in (A,µ) is a pair (I, i) of an object I ∈ Ob (C), together with a monomorphism
i : I → A, which is both a left and a right ideal.

2. Let (A,µ) be a comagma in C.

a) A left coideal in (A,µ) is a pair (Q, q) of an object Q ∈ Ob (C), together with an epimorphism
q : A → Q which induces a (necessarily unique) morphism µQ : Q → A ⊗ Q making the
following diagram commute

A A⊗A A⊗Q

Q

µ

q

idA⊗q

∃!µQ

. (6.37)

b) A right coideal in (A,µ) is a pair (Q, q) of an object Q ∈ Ob (C), together with an epimorphism
q : A → Q which induces a (necessarily unique) morphism µQ : Q → Q ⊗ A making the
following diagram commute

A A⊗A Q⊗A

Q

µ

q

q⊗idA

∃!µQ

. (6.38)

c) A (double) coideal in (A,µ) is a pair (Q, q) of an objectQ ∈ Ob (C), together with an epimorphism
q : Q → A, which is both a left and a right coideal.

In associative magmas, ideals should be “modules which are contained in the magma”.

Proposition 6.1.6. Let (C,⊗,1, α, λ, ρ) be a monoidal category.

1. Let (A,µ) be a (possibly unital) magma. A left or right ideal (I, i) in (A,µ) is a left or right module over
(A,µ).
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2. Let (A,µ) be a (possibly counital) comagma. A left or right coideal (I, i) in (A,µ) is a left or right
comodule over (A,µ).

Proof. Suppose first that (A,µ) is not unital. We will prove that a left ideal (I, i) in (A,µ) is a left module
over (A,µ), when equipped with the left action ▷ = µI .

We have to prove that (6.19) commutes. We have

i ◦ ▷ ◦ (µ⊗ idI) = µ ◦ (idA ⊗ i) ◦ (µ⊗ idI)

= µ ◦ (µ⊗ idA) ◦ (idA⊗A ⊗ i)

= µ ◦ (idA ⊗ µ) ◦ α(A,A,A) ◦ (idA⊗A ⊗ i)

= µ ◦ (idA ⊗ µ) ◦ (idA ⊗ (idA ⊗ i)) ◦ α(A,A,I)

= µ ◦ (idA ⊗ (i ◦ µI)) ◦ α(A,A,I)

= i ◦ µI ◦ (idA ⊗ µI) ◦ α(A,A,I)

= i ◦ ▷ ◦ (idA ⊗ ▷) ◦ α(A,A,I)

, (6.39)

where we have used that the associator is a natural transformation (3.1), and the ideal condition (6.35). As i
is a monomorphism, this shows that (I, ▷) is a left module over (A,µ).

Suppose now that, in addition, (A,µ) is equipped with a unit η : 1 → A. We find

i ◦ ▷ ◦ (η ⊗ idA) = µ ◦ (idA ⊗ i) ◦ (η ⊗ idI)

= µ ◦ (η ⊗ idA) ◦ (id1 ⊗ i)

= λA ◦ (id1 ⊗ i)

= i ◦ λI

, (6.40)

where we have used the definition of unital magmas (6.4), and the fact that the left unitor is a natural trans-
formation (3.2). We conclude that (I, ▷) is also a left unital module if (A,µ) is unital. ■

We can also show that any ideal of a unital algebra that contains the monoidal unit must coincide with the
entire magma.

Proposition 6.1.7. Let (C,⊗,1, α, λ, ρ) be a monoidal category.

1. Let (A,µ, η) be a unital magma in C, and let (I, i) be an ideal in (A,µ). If the unit η : 1 → A factors
through the ideal as η = i ◦ ηI , then i is an isomorphism and (I, µI , ηI) is thus isomorphic as a unital
algebra to (A,µ, η).

2. Let (A,µ, η) be a counital comagma in C, and let (Q, q) be a coideal in (A,µ). If the counit η : A → 1

factors through the coideal as η = ηQ ◦ q, then q is an isomorphism and (Q,µQ, ηQ) is thus isomorphic
as a counital coalgebra to (A,µ, η).

Proof. If η factors through i as η = i ◦ ηI , then

idA = µ ◦ (idA ⊗ η) ◦ ρ−1
A

= µ ◦ (idA ⊗ i) ◦ (idA ⊗ ηI) ◦ ρ−1
A

. (6.41)

This implies that µ ◦ (idA ⊗ i) = i ◦ µI is a split epimorphism, hence that i is a split epimorphism. As i is
also a monomorphism, we conclude that i is an isomorphism. ■

An important ingredient in many constructions is the notion of the ideal generated by a subset of an algebra.
This concept is important in defining finitely generated algebras, as well as in the construction of algebras
such as the symmetric and exterior algebras on a set, the universal enveloping algebra of a Lie algebra, and
others.

Definition 6.1.8 ((Co)ideals generated by objects). Let (C,⊗,1, α, λ, ρ) be a monoidal category.
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1. Let (A,µ) be a magma in C, and let (X, f) be a subobject of A. A left, right, or double ideal (I, i)
is said to contain (X, f) if f factors through i, i.e. if there is exists a (necessarily unique) morphism
f : X → I making the following diagram commute

X A

I

f

∃!f i
. (6.42)

The left, right, double ideal generated by (X, f), denoted (I left(X, f), ileft(X, f)), (Iright(X, f), iright(X, f)),
(I(X, f), i(X, f)), is the smallest left, right, double ideal containing (X, f). This means that for any
other ideal (J, j) containing (X, f), this minimal ideal is contained in (J, j).

2. Let (A,µ) be a comagma in C, and let (X, f) be a quotient of A. (X, f) is said to be a quotient of a
left, right, or double coideal (Q, q) if f factors through q, i.e. if there is exists a (necessarily unique)
morphism f : Q → X making the following diagram commute

A X

Q

f

q ∃!f
. (6.43)

The left, right, double coideal generated by (X, f), denoted (Qleft(X, f), qleft(X, f)), (Qright(X, f), qright(X, f)),
(Q(X, f), q(X, f)), is the smallest left, right, double coideal that has (X, f) as a quotient. This means
that for any other coideal (R, r) that has (X, f) as a quotient, this minimal coideal is a quotient of
(R, r).

6.2 Algebras in enriched monoidal categories

6.2.1 Examples of algebras in monoidal categories

We will now work in monoidal categories which are enriched over some commutative ring, which leads to
the proper generalisation of algebras over rings.

Definition 6.2.1 ((Co)algebras). Let (C,⊗,1, α, λ, ρ) be a monoidal category that is enriched over some
commutative ring R such that the monoidal product is bilinear on morphisms. Magmas in this category are
then called algebras, and comagmas are called coalgebras.

Example 43. Let R be a commutative ring. Algebras in RMod are R-algebras, and modules over algebras
in this category are modules over R-algebras in the usual sense.

Example 44 (External and internal endomorphism algebras, [EGNO15, Example 7.8.4]). Let C be
monoidal and enriched over a commutative ring R such that the monoidal product is bilinear. For any
object X ∈ Ob (C), the endomorphism ring EndC(X) = HomC(X,X) is an R-algebra, called the (external)
endomorphism algebra.

Suppose now that, in addition, C is left rigid, and set Endleft(X) = End(X) := X ⊗X∗ and End
left

(X) =
End(X) := X∗ ⊗X . We define an algebra (End(X),∇) in C through

∇ =
X X∗XX∗

, (6.44)
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and a coalgebra (End(X),∆) through

∆ =

X∗ XX∗X

. (6.45)

We can prove that (End(X),∇) is associative and (End(X),∆) coassociative;

∇ ◦ (id⊗∇) = = = ∇ ◦ (∇⊗ id),

(id⊗∆) ◦∆ = = = (∆⊗ id) ◦∆.

(6.46)

Furthermore, (End(X),∇) is unital with unit coevX , and (End(X),∆) is counital with counit evX ;

∇ ◦ (coevX ⊗ id) = = = = ∇ ◦ (id⊗ coevX),

(evX ⊗ id) ◦∆ = = = = (id⊗ evX) ◦∆.

(6.47)

If C is right rigid, we similarly have an associative unital algebra structure on Endright(X) := ∗X ⊗X , and
a coassociative counital coalgebra structure on End

right
(X) := X ⊗ ∗X .

Example 45 (External and internal morphism modules, [EGNO15, Example 7.8.11]). Let C be monoidal
and enriched over a commutative ring R such that the monoidal product is bilinear. For any two objects
X,Y ∈ Ob (C), the hom-space HomC(X,Y ) equipped with the composition as an action is a right module
over EndC(X) = HomC(X,X), and a left module over EndC(Y ) = HomC(Y, Y ).

Similarly, in left rigid categories, Hom(X,Y ) := Y ⊗ X∗ is a right module over End(X) = X ⊗ X∗,
and a left module over End(Y ). The actions have a similar structure to the multiplication in Example 44.
Hom(X,Y ) := Y ∗ ⊗X is a right comodule over End(X) = X∗ ⊗X , and a left comodule over End(Y ) =
Y ∗ ⊗ Y .

6.2.2 The unital hull of an algebra

We introduce the unital hull of an algebra, as units sometimes enable more natural or beautiful constructions.
This will become apparent, for instance, in our treatment of ideals generated by subobjects.

Definition 6.2.2 ((Co)unital hull of a (co)algebra). Let (C,⊗,1, α, λ, ρ) be an additive monoidal category
such that the monoidal product is bilinear on morphisms.

1. Let (A,µ) be an algebra in C. The unital hull of (A,µ) is the algebra (Au, µu) with Au := A⊕ 1, and

µu = incA ◦µ ◦ projA⊗A + incA ◦ρA ◦ projA⊗1+ incA ◦λA ◦ proj1⊗A + inc1 ◦λ1 ◦ proj1⊗1 . (6.48)
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2. Let (A,µ) be a coalgebra in C. The counital hull of (A,µ) is the coalgebra (Au, µu) with Au := A⊕1,
and

µu = incA⊗A ◦µ◦projA + incA⊗1 ◦ρ−1
A ◦projA + inc1⊗A ◦λ−1

A ◦projA + inc1⊗1 ◦λ1◦proj1 . (6.49)

Proposition 6.2.3. Let (C,⊗,1, α, λ, ρ) be an additive monoidal category such that the monoidal product is
bilinear on morphisms.

1. Let (A,µ) be an algebra in C. The unital hull (Au, µu) is unital with unit

ηu = inc1 : 1 → Au. (6.50)

2. Let (A,µ) be a coalgebra in C. The counital hull (Au, µu) is counital with counit

ηu = proj1 : Au → 1. (6.51)

Proof. We have

µu ◦ (ηu ⊗ idAu
) = (incA ◦λA ◦ proj1⊗A + inc1 ◦λ1 ◦ proj1⊗1) ◦ (inc1⊗idAu

)

= (incA ◦λA ◦ proj1⊗A + inc1 ◦λ1 ◦ proj1⊗1) ◦ (inc1⊗(incA ◦ projA + inc1⊗ projA))

= incA ◦λA ◦ (id1 ⊗ projA) ◦ λ−1
Au

+ inc1 ◦λ1 ◦ (id1 ⊗ proj1)

= incA ◦ projA ◦λAu
+ inc1 ◦ proj1 ◦λAu

= λAu

,

(6.52)
and similarly we prove µu ◦ (idAu ⊗ ηu) = ρAu . ■

6.2.3 Ideals in algebras

An abelian structure allows us to a lot more with ideals in algebras. Most importantly, an abelian structure
allows us to define the quotient of an algebra over an ideal.

Quotients of algebras over ideals

Definition 6.2.4 ((Co)quotient of a (co)algebra over a (co)ideal). Let (C,⊗,1, α, λ, ρ) be an abelian
monoidal category such that the monoidal product is bilinear and biexact.

1. Let (A,µ) be an algebra in C, and let (I, i) be a (double) ideal in (A,µ). Setting A/I := Coker(i), we
have a short exact sequence

0 I A A/I 0i coker(i)
. (6.53)

Lemma 5.4.1 shows that coker(i)⊗ coker(i) is the cokernel of

i = (i⊗ idA) ◦ projI⊗A +(idA ⊗ i) ◦ projA⊗I . (6.54)

As (I, i) is a double ideal, we find

µ ◦ i = i ◦ µright
I ◦ projI⊗A +i ◦ µleft

I ◦ projA⊗I . (6.55)

This implies that (coker(i) ◦ µ) ◦ i = 0, hence that there exists a uniquely induced morphism µA/I :
A/I ⊗A/I → A/I making the following diagram commute

A⊗A A

A/I ⊗A/I A/I

coker(i)⊗coker(i)

µ

coker(i)

∃!µA/I

. (6.56)

The algebra (A/I, µA/I) is called the quotient algebra of (A,µ) over (I, i).
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2. Let (A,µ) be a coalgebra in C, and let (A/I, q) with I = Ker(q) be a (double) coideal over (A,µ). As
in the above, there is a unique morphism µI : I → I ⊗ I such that the following diagram commutes

I I ⊗ I

A A⊗A

∃!µI

ker(q) ker(q)⊗ker(q)

µ

. (6.57)

The coalgebra (I, µI) is called the coquotient coalgebra of (A,µ) over (Q, q).

The use of Lemma 5.4.1 shows that it is not entirely trivial that quotients of algebras over ideals are algebras
in our general setting.

Ideals in unital algebras

In categories that admit kernels, we will show that we can construct ideals in a non-unital algebra by using
the ideals of its unital hull. This is convenient, as working with unital algebras is often simpler.

More generally, we will now introduce a unital hull functor on subobjects. Recall the definition of categories
of subobjects and quotients, Definition 1.1.6.

Definition 6.2.5. Let (C,⊗,1, α, λ, ρ) be a pre-abelian monoidal category such that the monoidal product
is bilinear on morphisms. Let A ∈ Ob (C) and let Au := A⊕ 1. We define the following maps on objects

UnitHullA : Sub(A) → Sub(Au) : (X, f) 7→ (X, incA ◦f), (6.58)
UnitHullA : Sub(Au) → Sub(A) : (Xu, fu) 7→ (Ker(proj1 ◦fu), projA ◦fu ◦ ker(proj1 ◦fu)), (6.59)

and

CounitHullA : Quot(A) → Quot(Au) : (X, f) 7→ (X, f ◦ projA), (6.60)
CounitHullA : Quot(Au) → Quot(A) : (Xu, fu) 7→ (Coker(fu ◦ inc1), coker(fu ◦ inc1) ◦ fu ◦ incA).

(6.61)

Lemma 6.2.6. Let (C,⊗,1, α, λ, ρ) be a pre-abelian monoidal category such that the monoidal product is bilin-
ear on morphisms, and let A ∈ Ob (C). The above maps UnitHullA,UnitHullA,CounitHullA,CounitHullA
define functors, and

UnitHullA ◦UnitHullA = idSub(A), (6.62)
CounitHullA ◦ CounitHullA = idQuot(A). (6.63)

Proof. We will first prove that these maps are well-defined. If (X, f) ∈ Ob
(
Sub(A)

)
, then incA ◦f is a

monomorphism, which shows that UnitHullA(X, f) is a subobject of Au. If (Xu, fu) ∈ Ob
(
Sub(Au)

)
,

then

incA ◦ projA ◦fu ◦ ker(proj1 ◦fu) = (incA ◦ projA + inc1 ◦ proj1) ◦ fu ◦ ker(proj1 ◦fu)
= fu ◦ ker(proj1 ◦fu)

(6.64)

is a monomorphism, which implies that UnitHullA(Xu, fu) is a subobject of A.

Next, we show that these maps induce a map on morphisms. Let f : X → Y be such that f = g ◦ f for
(X, f), (Y, g) ∈ Ob

(
Sub(A)

)
. We define

UnitHullA(f) = f, (6.65)

and we trivially have incA ◦g ◦ f = incA ◦f .
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Let fu : Xu → Yu be such that fu = gu ◦ fu for (Xu, fu), (Yu, gu) ∈ Ob
(
Sub(Au)

)
. We then find

(proj1 ◦gu) ◦ (fu ◦ ker(proj1 ◦fu)) = (proj1 ◦fu) ◦ ker(proj1 ◦fu) = 0, (6.66)

which implies that there is a uniquely induced morphism f : Ker(proj1 ◦fu) → Ker(proj1 ◦gu) such that
ker(proj1 ◦gu) ◦ f = fu ◦ ker(proj1 ◦fu). Setting

UnitHullA(fu) = f, (6.67)

we obtain

projA ◦gu ◦ ker(proj1 ◦gu) ◦ f = projA ◦gu ◦ fu ◦ ker(proj1 ◦fu) = projA ◦fu ◦ ker(proj1 ◦fu). (6.68)

The fact that these maps are functors now follows from the fact that all hom-sets contain at most one mor-
phism.

Finally, UnitHullA ◦UnitHullA = idSub(A) follows from proj1 ◦ incA ◦f = 0 and projA ◦ incA ◦f = f . ■

We will now prove that the unital hull functor preserves ideals of algebras.

Proposition 6.2.7. Let (C,⊗,1, α, λ, ρ) be a pre-abelian monoidal category such that the monoidal product
is bilinear on morphisms.

1. Let (A,µ) be an algebra in C, and let (Au, µu, ηu) be the unital hull of this algebra. UnitHullA and
UnitHullA restrict to functors on the categories of ideals (which are the full subcategories of Sub(A) and
Sub(Au) consisting of all ideals), by which we mean that

a) provided with a left, right, or double ideal (I, i) in (A,µ), UnitHullA(I, i) is a left, right, or double
ideal in (Au, µu),

b) provided with a left, right, or double ideal (Iu, iu) in (Au, µu), UnitHullA(Iu, iu) is a left, right, or
double ideal in (A,µ).

2. Let (A,µ) be a coalgebra in C, and let (Au, µu, ηu) be the counital hull of this coalgebra. CounitHullA
and CounitHullA restrict to functors on the categories of coideals (which are the full subcategories of
Quot(A) and Quot(Au) consisting of all coideals), by which we mean that

a) provided with a left, right, or double coideal (Q, q) over (A,µ), CounitHullA(Q, q) is a left, right,
or double coideal over (Au, µu),

b) provided with a left, right, or double coideal (Qu, qu) over (Au, µu), CounitHullA(Qu, qu) is a left,
right, or double coideal over (A,µ).

Proof. We denote UnitHullA(I, i) = (Iu, iu) and UnitHullA(Iu, iu) = (I, i).

Suppose that (Iu, iu) is a left ideal in (Au, µu). This implies that there exists a morphism µIu
u : Au⊗Iu → Iu

such that
µu ◦ (idAu ⊗ iu) = iu ◦ µIu

u . (6.69)

We thus find
proj1 ◦iu ◦ µIu

u ◦ (incA ⊗idIu) = proj1 ◦µu ◦ (incA ⊗iu) = 0, (6.70)

from which we conclude that there is a uniquely induced morphism µI : A⊗ I → Ker(proj1 ◦iu) such that
the following diagram commutes

A⊗ I A⊗ Iu Au ⊗ Iu Iu

Ker(proj1 ◦iu)

∃!µI

idA⊗ker(proj1 ◦iu) incA ⊗idIu µIu
u

ker(proj1 ◦iu)
. (6.71)
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Using this morphism, we see

i ◦ µI = projA ◦iu ◦ ker(proj1 ◦iu) ◦ µI

= projA ◦iu ◦ µIu
u ◦ (incA ⊗ker(proj1 ◦iu))

= projA ◦µu ◦ (incA ⊗(iu ◦ ker(proj1 ◦iu)))
= (µ ◦ (projA ⊗ projA) + ρA ◦ (projA ⊗ proj1)) ◦ (incA ⊗(iu ◦ ker(proj1 ◦iu)))
= µ ◦ (idA ⊗ i)

. (6.72)

We conclude that (I, i) = UnitHull(Iu, iu) is an ideal in (A,µ) as we already know that i is a monomorphism
from Lemma 6.2.6.

Suppose now that (I, i) is a left ideal in (A,µ). We obtain

µu ◦ (idAu
⊗ iu) = incA ◦µ ◦ (projA ⊗i) + incA ◦λA ◦ (proj1⊗i)

= incA ◦i ◦ µI ◦ (projA ⊗idI) + incA ◦i ◦ λI ◦ (proj1⊗idI)

= iu ◦ (µI ◦ (projA ⊗idI) + λI ◦ (proj1⊗idI))

, (6.73)

which implies that (Iu, iu) = UnitHull(I, i) is a left ideal in (Au, µu) by setting

µIu
u := µI ◦ (projA ⊗idI) + λI ◦ (proj1⊗idI). (6.74)

■

Ideals generated by a subobject

Ideals generated by a subset X of an associative unital R-algebra A are very easy to define as ⟨X⟩ = RX =
{r · x | r ∈ R, x ∈ X} (for left ideals). In non-associative algebras this becomes a bit harder: r · x must be
included in ⟨X⟩ for all r ∈ R and x ∈ X , but also s · (r ·x), which may not equal (s · r) ·x, must be included
in ⟨X⟩ for all r, s ∈ R and x ∈ X .

More generally, we obtain a sequence of sets X,RX,R(RX), R(R(RX)), . . . each included in the next, and
all of which should be contained in the ideal generated by X . It is then clear that the colimit of this sequence
must be included in the ideal generated by X , and it is not very hard to convince yourself that this colimit is
in fact equal to the ideal generated by X (as it is

⋃
n R

nX).

This is a procedure we can generalise in abelian monoidal categories.

Definition 6.2.8. Let (C,⊗,1, α, λ, ρ) be an abelian monoidal category.

1. Let (A,µ, η) be a unital algebra in C, and let (X, f) be a subobject of A.

a) We define g0 := f,G0 := X , and inductively

gn := µ ◦ (idA ⊗ im(gn−1)) : A⊗Gn−1 → A and Gn := Im(gn). (6.75)

Setting gn := coim(gn+1) ◦ (η⊗ idGn) ◦ λ−1
Gn

, we see that im(gn+1) ◦ gn = im(gn) by using the
fact that η is a unit for (A,µ) (6.4), and the fact that the left unital is a natural isomorphism (3.2).

We thus obtain a commutative diagram

A

X G1 G2 · · ·

f

g0 g1

im(g1)

g2

im(g2)

(6.76)

Define a category Ileft that has an object ⋆n for every n ≥ 0, and for which there is a unique
morphism in : ⋆n → ⋆n+1 (and all other morphisms are either identities or compositions of these
morphisms). It is easy to see that this category is filtered.
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We define Gleft : Ileft → C : ⋆n 7→ Gn and in 7→ gn, and we denote the colimit of this functor
(in Cind if it does not exist in C) colim(Gleft) = colimn(Gn) and the corresponding morphisms
g
n
: Gn → colim(Gleft).

The above diagram shows that (A, im(gn)) is a cocone on Gleft. We thus obtain a unique mor-
phism ileft : colim(Gleft) → A such that i ◦ g

n
= im(gn) for all n ≥ 0.

b) Similarly, we define a functor Gright : Iright → C where Iright is a filtered category obtained by
replacing gn by µ ◦ (im(gn−1) ⊗ idA) in the above. The induced morphism is denoted iright :
colim(Gright) → A.

c) We define g0 := f,G0 := X as before, and we set

g2n := µ ◦ (im(g2n−1)⊗ idA), g2n−1 := µ ◦ (idA ⊗ im(g2n−2)), and Gn := Im(gn). (6.77)

We can once again define morphisms gn : Gn → Gn+1 such that im(gn+1) ◦ gn = im(gn) by
setting g2n = coim(g2n+1) ◦ (η ⊗ idG2n−1) ◦ λ−1

G2n−1
and g2n−1 = coim(g2n) ◦ (idG2n−2 ⊗ η) ◦

ρ−1
G2n−2

, a category I modelling this sequence of monomorphisms, a functor G : I → C mapping
the category to the sequence, and a pair (colim(G), i) of the filtered colimit of G together with a
uniquely induced morphism i : colim(G) → A.

2. Let (A,µ, η) be a counital coalgebra in C, and let (X, f) be a quotient of A.

a) We define h0 := f,H0 := X , and inductively

hn = (idA ⊗ coim(hn−1)) ◦ µ : A → A⊗Hn−1 ◦ µ and Hn := Coim(hn). (6.78)

Set hn := λHn ◦ (η ⊗ idHn) ◦ im(hn+1), we see that hn ◦ coim(hn+1) = coim(hn).

We thus obtain a commutative diagram

· · · H2 H1 X

A

h2 h1 h0

f
coim(h1)

coim(h2)

. (6.79)

As before we define a functor Hleft : Jleft → C where Jleft is a cofiltered category consisting
of objects modelling the horizontal part of the above diagram, and where the functor maps this
category to the horizontal sequence.

We denote the limit of this functor lim(Hleft), and the induced morphism qleft : A → lim(Hleft).

b) We can define a functor Hright : Jright → C. We obtain the limit lim(Hright) and the induced
morphism qright : A → lim(Hright).

c) We can define a functor H : J → C. We obtain the limit lim(H) and the induced morphism
q : A → lim(H).

We will prove that these filtered colimits are the ideals generated by the corresponding subobjects. One
technical result we need for this, is that the induced morphism colimn(Gn) → A is a monomorphism.

Lemma 6.2.9. Let (C,⊗,1, α, λ, ρ) be a small abelian monoidal category. The morphisms ileft, iright, i defined
above are monomorphisms, and the morphisms qleft, qright, q are epimorphisms.

Proof omitted. This follows from the fact that the ind-cocompletion of a (small) abelian category is a Grothendieck
category (see for example this nLab page on Grothendieck categories, [aut25b]), which implies that the short
exact sequences

0 Gn A Coker(gn) 0
im(gn) coker(gn) (6.80)
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get mapped to the short exact sequence

0 colimn(Gn) colim(A) colimn(Coker(gn)) 0

0 colim(Gleft) A colimn(Coker(gn)) 0

colimn(im(gn)) colimn(coker(gn))

ileft colimn(coker(gn))

. (6.81)

We can then conclude that ileft is a monomorphism. ■⧸

Proposition 6.2.10. Let (C,⊗,1, α, λ, ρ) be an abelian rigid monoidal category such that the monoidal prod-
uct is bilinear on morphisms.

1. Let (A,µ, η) be a unital algebra in C, and let (X, f) be a subobject of A.

a) (colim(Gleft), ileft) is a left ideal, (colim(Gright), iright) is a right ideal, and (colim(G), i) is a
double ideal in (A,µ, η).

b) (colim(Gleft), ileft) is the left ideal generated by (X, f), (colim(Gright), iright) is the right ideal
generated by (X, f), and (colim(G), i) is the double ideal generated by (X, f).

c) If (A,µ) is associative, then colim(Gleft) = Im(µ ◦ (idA ⊗ f)), ileft = im(µ ◦ (idA ⊗ f)), and
colim(Gright) = Im(µ ◦ (f ⊗ idA)), iright = im(µ ◦ (f ⊗ idA)).

d) If, in addition, the category is braided, and (A,µ) is commutative or anti-commutative, then colim(G) =
colim(Gleft) = colim(Gright), and i = ileft = iright.

2. Let (A,µ, η) be a counital coalgebra in C, and let (X, f) be a quotient of A.

a) (lim(Hleft), qleft) is a left coideal, (lim(Hright, qright)) is a right coideal, and (lim(H), q) is a double
coideal in (A,µ, η).

b) (lim(Hleft), qleft) is the left coideal generated by (X, f), (lim(Hright, qright)) is the right coideal
generated by (X, f), and (lim(H), q) is the double coideal generated by (X, f).

c) If (A,µ) is coassociative, then lim(Hleft) = Coim((idA ⊗ f) ◦ µ), qleft = coim((idA ⊗ f) ◦ µ),
and lim(Hright) = Coim((f ⊗ idA) ◦ µ), qright = coim((f ⊗ idA) ◦ µ).

d) If, in addition, the category is braided, and (A,µ) is cocommutative or anti-cocommutative, then
lim(H) = lim(Hleft) = lim(Hright) = Coim((idA ⊗ f) ◦ µ), and q = qleft = qright =
coim((idA ⊗ f) ◦ µ).

Proof. We will first prove (1a).

Lemma 6.2.9 shows that ileft is a monomorphism. All that we have to check is that (6.35) holds. As C is rigid,
we know that A ⊗ − is a left adjoint, which implies that it preserves colimits through Theorem 1.4.3. We
thus find colimn(A⊗Gn) = A⊗ colimn(Gn), where the colimit is taken with regard to the filtration

· · · A⊗Gn−1 A⊗Gn A⊗Gn+1 · · ·
idA⊗gn−1 idA⊗gn (6.82)

We then find a commutative diagram

· · · A⊗Gn−1 A⊗Gn A⊗Gn+1 · · ·

· · · Gn−1 Gn Gn+1 · · ·

colimn(Gn)

A

coim(gn)

idA⊗gn−1 idA⊗gn

coim(gn+1)

g
n−1

gn−1

g
n

gn

g
n+1

ileft

, (6.83)
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where the squares commute due to

im(gn+1) ◦ gn ◦ coim(gn) = im(gn) ◦ coim(gn) = gn

= µ ◦ (idA ⊗ im(gn−1))

= µ ◦ (idA ⊗ (im(gn) ◦ gn−1))

= gn+1 ◦ (idA ⊗ gn−1)

= im(gn+1) ◦ coim(gn+1) ◦ (idA ⊗ gn−1)

. (6.84)

This implies that we have cocones (colimn(Gn), gn+1
◦ coim(gn+1)) and (A, gn+1), and hence uniquely

induced morphisms

µcolimn(Gn) : A⊗ colimn(Gn) → colimn(Gn) and ζ : A⊗ colimn(Gn) → A (6.85)

such that g
n+1

◦ coim(gn+1) = µcolimn(Gn) ◦ (idA ⊗ g
n
) and gn+1 = ζ ◦ (idA ⊗ g

n
) for all n.

It is then clear that ζ = µ◦(idA⊗ ileft) as µ◦(idA⊗ ileft)◦(idA⊗g
n
) = µ◦(idA⊗ im(gn)) = gn+1 for all n.

However, we also find ζ = ileft ◦µcolimn(Gn) as ileft ◦µcolimn(Gn) ◦ (idA⊗g
n
) = ileft ◦gn+1

◦coim(gn+1) =
gn+1.

As ζ is unique, we conclude that (6.35) holds.

The proof for the right ideal and double ideal are identical, where we use that colimn(Gn) = colim2n(G2n) =
colim2n+1(G2n+1) for the double ideal.

We will now prove (1b). First, note that it is trivial that (colim(Gleft), ileft) contains (X, f) because G0 = X
and g0 = f . Let (J, j) be any other left ideal that contains (X, f). Replacing (A,µ, η) by (J, µJ , η) and f by
the induced morphism f : X → J such that f = j ◦ f , we find a commutative diagram

J

X H1 H2 · · ·h0

f
im(h1)

h1

im(h2)

h2

(6.86)

We have
j ◦ h1 = j ◦ µJ ◦ (idA ⊗ f) = µ ◦ (idA ⊗ j) ◦ (idA ⊗ f) = µ ◦ (idA ⊗ f) = g1, (6.87)

and inductively

j ◦hn = j ◦µJ ◦(idA⊗ im(hn−1)) = µ◦(idA⊗j)◦(idA⊗ im(hn−1)) = µ◦(idA⊗ im(gn−1)) = gn. (6.88)

As a consequence, we find Hn = Im(hn) = Im(gn) = Gn and j ◦ im(hn) = im(gn). This implies that we
have a cocone

J

X G1 G2 . . .

f

g0 g1

im(h1)

g2

im(h2)

, (6.89)

and a uniquely induced morphism ileft : colimn(Gn) → J such that j ◦ ileft = ileft.

The proofs for the right and double ideal are again identical.

For (1c), we have

g2 ◦ (idA ⊗ coim(g1)) = µ ◦ (idA ⊗ g1)

= µ ◦ (idA ⊗ µ) ◦ (idA ⊗ (idA ⊗ f))

= µ ◦ (µ⊗ idA) ◦ α−1
(A,A,A) ◦ (idA ⊗ (idA ⊗ f))

= µ ◦ (µ⊗ idA) ◦ (idA⊗A ⊗ f) ◦ α−1
(A,A,X)

= µ ◦ (idA ⊗ f) ◦ (µ⊗ idX) ◦ α−1
(A,A,X)

= g1 ◦ (µ⊗ idX) ◦ α−1
(A,A,X)

. (6.90)

140



6 Algebras in Monoidal Categories

This implies that g2 ◦ epi = g1 ◦ epi (using that id⊗ epi and epi⊗ id are epimorphisms because the category
is rigid, and that µ is a split epimorphism because the algebra is unital). In particular, im(g2) = im(g1) and
hence im(gn) = im(g1) and Im(gn) = Im(g1) for all n ≥ 1. The sequence of monomorphisms then becomes

X G1 G1 . . .
idG1

idG1 (6.91)

The colimit of this diagram is G1.

Finally, we will prove (1d). Suppose that C is equipped with a braiding γ, and that (A,µ) is commutative.
We then find

µ ◦ (idA ⊗ f) = µ ◦ γ(A,A) ◦ (idA ⊗ f) = µ ◦ (f ⊗ idA) ◦ γ(A,X), (6.92)

and similarly
gn = µ ◦ (idA ⊗ im(gn−1)) = µ ◦ (im(gn−1)⊗ idA) ◦ γ(A,Gn−1). (6.93)

This implies that the sequences of monomorphisms, and hence colimits, are equal. ■

Remark 6.2.11. In Remark 1.3.14, we already showed that arbitrary intersections of collections of subobjects
exist and can be expressed as filtered colimits. It would therefore have been possible to define the ideal
generated by a subobject as the intersection of all ideals containing it. Consequently, the result above is
of interest only because it provides a construction of the ideal generated by a subobject using a countable
filtered colimit, and because the objects appearing in this colimit are much better understood than arbitrary
ideals.

We have not yet discussed ideals generated by objects in the context of non-unital algebras. We could try to
find a technical construction generalising Definition 6.2.8, but we could also use the theory of unital hulls
we have already introduced. More specifically, we will now show that Lemma 6.2.6 and Proposition 6.2.7
allow us to extend the above result to the setting of non-unital algebras. The idea to use unital hulls for this
purpose, which was the author’s sole motivation for developing any of the preceding discussion on unital
hulls, was suggested by Prof. Dr. Tom De Medts.

Corollary 6.2.12. Let (C,⊗,1, α, λ, ρ) be a pre-abelian monoidal category such that the monoidal product is
bilinear on morphisms.

1. Let (A,µ) be an algebra in C, and let (Au, µu, ηu) be its unital hull.

Let (Xu, fu) be a subobject of Au, and let (Iu, iu) be the left, right, or double ideal generated by (Xu, fu)
in (Au, µu). The ideal (I, i) = UnitHullA(Iu, iu) in (A,µ) is the left, right, or double ideal generated by
the subobject (X, f) = UnitHullA(Xu, fu) of A.

This implies that, when the category is additionally rigid, ideals generated by subobjects can be obtained
through the filtered colimit construction given in Definition 6.2.8.

2. Let (A,µ) be a coalgebra in C, and let (Au, µu, ηu) be its unital hull.

Let (Xu, fu) be a quotient ofAu, and let (Qu, qu) be the left, right, or double coideal generated by (Xu, fu)
over (Au, µu). The coideal (Q, q) = CounitHullA(Qu, qu) over (A,µ) is the left, right, or double coideal
generated by the quotient (X, f) = CounitHull(Xu, fu) of A.

This implies that, when the category is additionally rigid, coideals generated by quotients can be obtained
through the cofiltered limit construction given in Definition 6.2.8.

Proof. The ideal generated by (X, f) in (A,µ) is an initial object in the full subcategory of Sub(A) consisting
of ideals which contain (X, f). UnitHullA ◦ UnitHullA = idSub(A) (Lemma 6.2.6) shows that UnitHullA
preserves such initial objects, as this shows that any ideal in (A,µ) containing (X, f) can be obtained by
applying UnitHullA to an ideal in (Au, µu) containing (Xu, fu), ■

Our discussion of ideals generated by subobjects allows us to define finitely generated algebras in our general
setting. A more restrictive version of this definition for unital associative commutative algebras can be found
in [Ven23].
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Definition 6.2.13 (Finitely generated algebras). Let C be an abelian rigid monoidal category such that
the monoidal product is bilinear on morphisms.

1. An algebra (A,µ) in Cind is called finitely generated if there is a subobject (X, f) of A such that
X ∈ Ob (C) (which can be interpreted as X being “finite-dimensional”), and such that the (double)
ideal generated by (X, f) is isomorphic to (A,µ).

2. A coalgebra (A,µ) in Cind is called finitely generated if there is a quotient (X, f) of A such that
X ∈ Ob (C), and such that the (double) coideal generated by (X, f) is isomorphic to (A,µ).

The tensor algebra

The above discussion also allows us to define the tensor, symmetric, and exterior algebra on any object.

Example 46 (Tensor, symmetric, and exterior algebra, [EGNO15, Remark 9.9.6] and [Ven23, § 2.3]).
Let (C,⊗,1, α, λ, ρ) be an abelian rigid monoidal category such that the monoidal product is bilinear on
morphisms, and let A ∈ Ob (C) be any object. We define T0(A) = T0A := 1, and inductively

Tn(A) = TnA := Tn−1(A)⊕A⊗n. (6.94)

We obtain the filtered diagram

1 = T0(A) A = T1(A) T2(A) . . .
incT0(A) incT1(A) incT2(A) (6.95)

The colimit of this diagram in Cind is denoted

T (A) = TA =

∞⊕
n=0

A⊗n, (6.96)

and the morphisms into the colimit are denoted in : Tn(A) → T (A). As C is rigid, we know that the monoidal
product preserves colimits, hence that T (A) ⊗ T (A) is the colimit of Tn(A) ⊗ Tm(A) with morphisms
inm : Tn(A)⊗ Tm(A) → T (A)⊗ T (A). However, we also have morphisms

µnm : Tn(A)⊗ Tm(A) → T (A) obtained by mapping A⊗n ⊗A⊗m to A⊗(n+m). (6.97)

We find a cocone (T (A), µnm) on Tn(A)⊗ Tm(A), hence a uniquely induced morphism

µ : T (A)⊗ T (A) → T (A) such that µ ◦ inm = µnm. (6.98)

The algebra (T (A), µ) is called the tensor algebra on A. This algebra is associative and unital with unit i0.

Suppose that, in addition, C is equipped with a braiding γ.

We define the symmetric algebra S(A) = SA in Cind as the quotient algebra of the tensor algebra (T (A), µ)
over the ideal generated by Im(idA⊗A − γ(A,A)).

We define the exterior algebra ∧(A) = ∧A as the quotient of T (A) over the ideal generated by Im(idA⊗A +
γA⊗A).

Remark 6.2.14. Our definitions of the tensor, symmetric, and exterior algebras differ slightly from those
commonly found in the literature (see, for example, [EGNO15; Ven23]).

Let an be the morphism Tn(A) → T (A) obtained by extending the morphism idA⊗A−γ(A,A) : A⊗A → A⊗
A (applying the, unnormalised, skew-symmetriser in every degree). This gives us a cocone on (Tn(A))n∈N,
hence a uniquely defined morphism a : T (A) → T (A) such that a◦ in = an for all n. (Ker(a), ker(a)) is an
ideal in (T (A), µ) as a ◦ µ ◦ (ker(a)⊗ ker(a)) = 0. The exterior algebra can then be defined as the quotient
of (T (A), µ) over (Ker(a), ker(a)). This definition coincides with the above one if the characteristic of the
field is not two.

We can also define the symmetric algebra and the exterior algebra as filtered colimits ofSn(A) = ⊕n
k=0S

k(A)
and ∧n(A) = ⊕n

k=0 ∧k (A).
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6.3 Lie algebras in categories

Next, we consider Lie algebras in the context of monoidal categories, as discussed in [EGNO15; Eti18; Ven23;
Kan24]. This requires a categorification of the classical Lie algebra axioms. Fortunately, the axioms for
Lie algebras (over fields of characteristic not equal to two) are linear, which allows for a straightforward
generalisation to the (braided) monoidal setting.

Definition 6.3.1 ((Operadic) Lie algebras, [EGNO15, Exercise 9.9.7] and [Eti18, Definition 4.1]). Let
(C,⊗,1, α, λ, ρ, γ) be a pre-additive symmetric monoidal category such that the monoidal product is bilinear
on morphisms. An algebra (A,µ) in C is called an (operadic) Lie algebra if it is anti-commutative, and the
following Jacobi identity holds

µ ◦ (idA ⊗ µ) ◦ (idA⊗A⊗A + σ + σ2) = 0, (6.99)

where σ : A⊗A⊗A → A⊗A⊗A is the automorphism corresponding to (123) ∈ S3, i.e. σ = γ(A,A⊗A).

Remark 6.3.2. We will refer to operadic Lie algebras simply as Lie algebras. However, some authors reserve
this term for operadic Lie algebras that satisfy the Poincaré-Birkhoff-Witt (PBW) theorem. It is known (see
[Eti18]) that in most symmetric tensor categories, not every operadic Lie algebra satisfies the PBW theorem,
unlike in the classical case.

Example 47. Lie algebras in the category of vector spaces over a field K coincide with the classical notion
of Lie algebras over K.

Example 48 (Commutator brackets, [EGNO15, Exercise 9.9.7 (i)]). Let C be a pre-additive symmetric
monoidal category, and let (A,µ) be an associative algebra. We define the commutator bracket as

µL := µ ◦ (idA⊗A − γ(A,A)). (6.100)

We claim that (A,µL) is a Lie algebra. It is immediately clear that (A,µL) is anti-commutative. Let us now
check that the Jacobi identity (6.99) holds.

Let us first note that

(γ(A,A) ⊗ idA) ◦ γ(A,A⊗A) = γ(A,A⊗A) ◦ (idA ⊗ γ(A,A)) (6.101)

through the Yang-Baxter theorem 3.6.6.

This implies that

µL ◦ (idA ⊗ µL) ◦ (idA⊗A⊗A + σ + σ2)

=
(
µ ◦ (idA ⊗ µ)− µ ◦ (µ⊗ idA) ◦ γ(A,A⊗A)

)
◦ (idA⊗A⊗A − idA ⊗ γ(A,A)) ◦ (idA⊗A⊗A + σ + σ2)

.

(6.102)

As (A,µ) is associative, we then find

µL ◦ (idA ⊗ µL) ◦ (idA⊗A⊗A + σ + σ2)

= µ ◦ (idA ⊗ µ) ◦ (idA⊗A⊗A − γ(A,A⊗A)) ◦ (idA⊗A⊗A − idA ⊗ γ(A,A)) ◦ (idA⊗A⊗A + σ + σ2)

= µ ◦ (idA ⊗ µ) ◦ (idA⊗A⊗A − γ(A,A) ⊗ idA) ◦ (idA⊗A⊗A − σ) ◦ (idA⊗A⊗A + σ + σ2)

= 0

. (6.103)

In particular, for every object X ∈ Ob (C), there is a Lie algebra structure on the internal endomorphism
algebra End(X), which we denote (gl(X),∇L).
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Example 49 (Orthogonal and symplectic Lie algebras, [EGNO15, Exercise 9.9.7 (ii)]). Let C be a
symmetric tensor category and let A ∈ Ob (C) be equipped with an isomorphism β : A → A∗ such that
β∗ = β or β∗ = −β (more specifically β∗ ◦ ωA = ±β, where ω : idC → idC

∗∗ is the natural isomorphism
defined in Corollary 3.6.8). We then define an algebra (∧2A,µ) through

∧2A⊗ ∧2A ∧2A

(A⊗A)⊗ (A⊗A) (A⊗A∗)⊗ (A⊗A∗) A⊗A∗ A⊗A

µ

im(a2)⊗im(a2)

(idA⊗β)⊗(idA⊗β) ∇L idA⊗β−1

coim(a2) . (6.104)

These algebras are Lie algebras (but we will not work this out here, as this is somewhat tedious and not
particularly insightful).

It is called the orthogonal Lie algebra o(A, β) if β∗ = β, and the symplectic Lie algebra sp(A, β) if β∗ = −β.

Example 50 (Lie superalgebras). Let K be some field. Lie algebras in sVectK are called Lie superalgebras
in the literature (see, for example, [EGNO15; Kan24]). If V ∈ Ob (sVectK) has even dimension ne and odd
dimension no, then we also write gl(V ) = gl(ne|no), o(V, β) = osp(ne|no, β), sp(V, β) = osp(no|ne, β)
(see, for example, [EGNO15; Kan24]).

6.4 Hopf algebras

In Section 4.5.3, we discussed the classification of pre-Tannakian symmetric tensor categories of moderate
growth. In particular, this classification highlights the importance of Hopf algebras and their categories of
modules or comodules in a relatively small collection of exotic symmetric tensor categories. In this section,
we will study bialgebras and Hopf algebras, and we will devote considerable attention to proving that the
category of modules over a Hopf algebra forms a symmetric tensor category.

6.4.1 Bialgebras and Hopf algebras

Before introducing Hopf algebras, we first introduce bialgebras, which are objects equipped with both an
algebra and a coalgebra structure, such that these structures are compatible.

Definition 6.4.1 (Bialgebras, [EGNO15, Definition 5.2.2 and Exercise 9.9.7 (vi)]). Let (C,⊗,1, α, λ, ρ, γ)
be a pre-additive braided monoidal category such that the monoidal product is bilinear on morphisms. A bial-
gebra in C is a tuple (A,∇,∆) such that ∇ : A ⊗ A → A,∆ : A → A ⊗ A, called the multiplication and
comultiplication respectively, are morphisms making the following diagram commute

A⊗A A A⊗A

(A⊗A)⊗ (A⊗A) (A⊗A)⊗ (A⊗A)

∇

∆⊗∆

∆

idA⊗γ(A,A)⊗idA

∇⊗∇ . (6.105)

Graphically, this is
A A

A A

=

A A

A A

. (6.106)
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Note that this just states that (A,∇) is an algebra, (A,∆) is a coalgebra, and that ∆ is an algebra morphism
(A,∇) → (A,∇)⊗ (A,∇) (or equivalently that ∇ is a coalgebra morphism (A,∆)⊗ (A,∆) → (A,∆)).

A bialgebra (A,∇,∆) is called associative if (A,∇) is an associative algebra and (A,∆) is a coassociative
coalgebra, i.e. if the following diagrams commute

(A⊗A)⊗A A⊗A A⊗A (A⊗A)⊗A

A A

A⊗ (A⊗A) A⊗A A⊗A A⊗ (A⊗A)

∇⊗idA

α(A,A,A)

∇

∆⊗idA

α(A,A,A)

∆

∆
idA⊗∇

∇
idA⊗∆

. (6.107)

A bialgebra (A,∇,∆) is called unital if there exist morphisms η : 1 → A, ε : A → 1 such that (A,∇, η)
and (A,∆, ε) are unital and counital respectively, making the following diagrams commute

A⊗A A 1 1⊗ 1

1⊗ 1 1 A A⊗A

∇

ε⊗ε ε

λ−1
1

η η⊗η

λ1 ∆

. (6.108)

This states that ∇ is in fact a unital coalgebra morphism, and that ∆ is in fact a unital algebra morphism.

A bialgebra is called commutative if the underlying algebra (A,∇) is commutative, and cocommutative if the
underlying coalgebra (A,∆) is cocommutative.

Bialgebras allow us to introduce a new multiplication on morphisms, the convolution.

Definition 6.4.2 (Convolution). Let (A,∇A,∆A) and (B,∇B ,∆B) be two bialgebras in a pre-additive
braided monoidal category with a bilinear monoidal product. We define the convolution of two morphisms
f, g : A → B as

f ⋆ g := ∇B ◦ (f ⊗ g) ◦∆A : A → B. (6.109)

Graphically, this is

f ⋆ g = f g

A

B

. (6.110)

It is clear that this operation has the unit ηB ◦εA when (A,∆A, εA) is counital and (B,∇B , ηB) is unital, and
it is also clear that this operation is associative when (A,∆A) is coassociative and (B,∇B) is associative.

Definition 6.4.3 (Hopf algebras, [EGNO15, Definition 5.3.10 and Exercise 9.9.7 (vi)]). Let (C,⊗,1, α, λ, ρ, γ)
be a pre-additive braided monoidal category such that the monoidal product is bilinear on morphisms. A Hopf
algebra is a tuple (A,∇, η,∆, ε, S) such that (A,∇, η,∆, ε) is a unital associative bialgebra, and such that
S : A → A, called the antipode, makes the following diagram commute

A⊗A A⊗A

A 1 A

A⊗A A⊗A

S⊗idA

∇∆

ε

∆

η

idA⊗S
∇

. (6.111)
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Graphically, this is

S

A

A

=

η

ε

A

A

= S

A

A

. (6.112)

Remark 6.4.4. Note that the definitions of bialgebras and Hopf algebras are self-dual, which implies that in
categories with duals, the dual of a bialgebra is a bialgebra, and the dual of a Hopf algebra is a Hopf algebra.

Example 51 (Group algebras). Let G be a group and let K be some field. The group algebra KG can be
equipped with a VectK-Hopf algebra structure

1. as a vector space KG is the free K-vector space on G,

2. the multiplication and the unit on KG are induced by the multiplication and unit on G,

3. the comultiplication is given on the basis of KG by g 7→ g ⊗ g, i.e.
∑

g∈G λgg 7→
∑

g∈G λgg ⊗ g,

4. the counit on KG is given by ε : KG → K :
∑

g∈G λgg 7→
∑

g∈G λg ,

5. the antipode on KG is given by S : KG → KG :
∑

g∈G λgg 7→
∑

g∈G λgg
−1.

It is then easy to check that (6.105), (6.107), (6.108), and (6.111) hold.

Example 52 (Coordinate algebras of affine algebraic groups). The coordinate algebras of affine alge-
braic groups (in the classical setting, and in the setting we will describe later) are finitely generated commu-
tative Hopf algebras.

The following lemma is a generalisation of [EGNO15, Proposition 5.3.6], and the sketch of the proof was
inspired by this MathOverflow question ([use17]).

Lemma 6.4.5. Let (A,∇, η,∆, ε, S) be a Hopf algebra in a pre-additive braided monoidal category C with a
bilinear monoidal product. We have

S

A A

A

= S S . (6.113)

Sketch of proof. It is easy to see that S ◦∇ is a left inverse for ∇ with regard the convolution product (using
(6.108)). Using graphical calculus it is also not very hard to see that ∇ ◦ S ◦ γ(A,A) is a right inverse for ∇
with regard to this product. As the convolution is associative, this implies that they are equal. ■⧸
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6.4.2 Modules and comodules over Hopf algebras

We are interested in modules and comodules over Hopf algebras. A (co)module over a Hopf algebra is simply a
(co)module over the underlying (co)algebra. This means that the algebra or coalgebra structure alone suffices
to define (co)modules, and the additional structure of the Hopf algebra does not affect the basic definition.
However, we will see that the presence of both structures (and in particular, their compatibility) allows one
to endow the category of modules or comodules with a monoidal structure. One could summarise this by
saying that the algebra structure determines the abelian structure on the category of modules, while the
coalgebra structure is responsible for endowing this category with a monoidal structure.

Modules and comodules over Hopf algebras are interesting because they describe representations, as the
following standard examples show.

Example 53 (Representations of groups as modules over the group algebra). Let G be a group, K
a field, and KG the group algebra of G over K. Modules over KG, viewed as a K-algebra, are precisely
K-linear representations of G. However, the tensor product ⊗KG of KG-modules does not coincide with the
tensor product of representations, which is defined using the tensor product ⊗K of vector spaces. Also, a
priori, there is no natural action of G on the tensor product V ⊗K W of two such representations.

Example 54 (Representations of affine algebraic groups as comodules over the coordinate alge-
bra). Comodules of the coalgebra defined by the coordinate algebra of an affine algebraic group are the
representations of this affine algebraic group.

Example 55. Every objectX ∈ Ob (C) defines a (1, ρ1)-module (X,λX) and a (1, ρ−1
1 )-comodule (X,λ−1

X ).
This can easily be seen through the triangle identity (3.5).

Definition 6.4.6 (Monoidal products of modules and comodules). Let (C,⊗,1, α, λ, ρ, γ) be a pre-
additive braided monoidal category such that the monoidal product is bilinear on morphisms, and let (A,∇,∆)
be a bialgebra in this category.

1. Let (M,▷M ), (N, ▷N ) be two (left) modules over the algebra (A,∇). We define the tensor product
(M,▷M ) ⊗mod (N, ▷N ) = (M ⊗ N, ▷M⊗N ) as the module given by the object M ⊗ N ∈ Ob (C),
equipped with the action

A⊗M ⊗N A⊗A⊗M ⊗N A⊗M ⊗A⊗N M ⊗N
∆⊗idM⊗N idA⊗γ(A,M)⊗idN ▷M⊗▷N ,

(6.114)
or writing out the associators

A⊗ (M ⊗N) M ⊗N

(A⊗A)⊗ (M ⊗N) (A⊗M)⊗ (A⊗N)

A⊗ (A⊗ (M ⊗N)) A⊗ (M ⊗ (A⊗N))

A⊗ ((A⊗M)⊗N) A⊗ ((M ⊗A)⊗N)

∆⊗idM⊗N

▷M⊗N

α(A,A,M⊗N)

▷M⊗▷N

idA⊗α−1
(A,M,N)

α−1
(A,M,A⊗N)

idA⊗(γ(A,M)⊗idN )

idA⊗α(M,A,N)

. (6.115)

Graphically, this is

▷M⊗N =

A M N

M N

. (6.116)
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2. Let (M,▷M ), (N, ▷N ) be two (left) comodules over the coalgebra (A,∆). We define the tensor product
(M,▷M )⊗comod (N, ▷N ) = (M ⊗N, ▷M⊗N ) as the comodule given by the object M ⊗N ∈ Ob (C),
equipped with the coaction

M ⊗N A⊗M ⊗A⊗N A⊗A⊗M ⊗N A⊗M ⊗N
▷M⊗▷N

idA⊗γ(M,A)⊗idN ∇⊗idM⊗N
,

(6.117)
or writing out the associators

M ⊗N A⊗ (M ⊗N)

(A⊗M)⊗ (A⊗N) (A⊗A)⊗ (M ⊗N)

A⊗ (M ⊗ (A⊗N)) A⊗ (A⊗ (M ⊗N))

A⊗ ((M ⊗A)⊗N) A⊗ ((A⊗M)⊗N)

▷M⊗N

▷M⊗▷N

α(A,M,A⊗N)

∇⊗idM⊗N

idA⊗α−1
(M,A,N)

α−1
(A,A,M⊗N)

idA⊗(γ(M,A)⊗idN )

idA⊗α(A,M,N)

. (6.118)

Graphically, this is

▷M⊗N =

M N

NMA

. (6.119)

Example 56. LetK be a field, letG be a group, and letKG be the Hopf algebra introduced in Example 51. Let
M,N be arbitrary KG-modules, or equivalently K-linear G-representations. For g ∈ G and x ∈ M,y ∈ N ,
Definition 6.4.6 gives

g ▷ (x⊗ y) = (g ▷ x)⊗ (g ▷ y). (6.120)

This shows that the above monoidal product corresponds to the standard tensor product of representations
for group algebras.

We begin by showing that this monoidal product is well-defined, i.e. that the monoidal product of modules
is a module.

Proposition 6.4.7. Let (C,⊗,1, α, λ, ρ, γ) be a pre-additive braided monoidal category such that the monoidal
product is bilinear on morphisms, and let (A,∇,∆) be an associative bialgebra in this category.

1. If (M,▷M ) and (N, ▷N ) are two (A,∇)-modules (resp. (A,∆)-comodules), then the tensor product (M⊗
N, ▷M⊗N ) of these two modules (resp. comodules) is again an (A,∇)-module (resp. an (A,∆)-comodule).

2. If f : (M,▷M ) → (N, ▷N ) and f : (M,▷M ) → (N, ▷N ) are morphisms between (A,∇)-modules (resp.
(A,∆)-comodules), then the tensor product f⊗f as morphisms in C is a morphism (M⊗M,▷M⊗M ) →
(N ⊗N, ▷N⊗N ).

Proof. We have to check that the following diagram commutes

A⊗A⊗M ⊗N A⊗M ⊗N

A⊗M ⊗N M ⊗N

∇⊗idM⊗N

idA⊗▷M⊗N ▷M⊗N

▷M⊗N

, (6.121)
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or graphically

A A M N

M N

=

AA M N

M N

. (6.122)

Using the bialgebra condition (6.106), we find

A A M N

M N

=

A A M N

M N

. (6.123)

Applying the naturality of the braiding (3.79), and the hexagon identity (3.80), we find

A A M N

M N

=

A A M N

M N

. (6.124)
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Using that (M,▷M ) and (N, ▷N ) are left modules (6.21), we find

A A M N

M N

=

A A M N

M N

. (6.125)

Applying the hexagon identity (3.80) and the naturality of the braiding (3.79) once again, we finally obtain

A A M N

M N

=

AA M N

M N

. (6.126)

Suppose now that f : (M,▷M ) → (N, ▷N ) and f : (M,▷M ) → (N, ▷N ) are morphisms between (A,∇)-
modules. We want to show that f ⊗ f is an (A,∇)-module morphism too, i.e. that the following diagram
commutes

A⊗M ⊗M A⊗N ⊗N

M ⊗M N ⊗N

idA⊗f⊗f

▷M⊗M ▷N⊗N

f⊗f

, (6.127)

or equivalently that
A

f f

M M

N N

N N

=

A M M

f f

M M

N N

. (6.128)

This follows from the naturality of the braiding (3.79), and the fact that f and f are module morphisms
(6.30). ■

We can now show that this monoidal product endows the category of modules with a monoidal structure.
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Proposition 6.4.8. Let (C,⊗,1, α, λ, ρ, γ) be a pre-additive (or more generally enriched over RMod, where
R is a commutative ring) braided monoidal category such that the monoidal product is bilinear on morphisms,
and let (A,∇,∆) be a bialgebra in this category.

1. If (A,∆, ε) is coassociative and counital, then ((A,∇)Mod,⊗mod, (1, ε◦ρA), α, λ, ρ) is a pre-additive (or
RMod-enriched) monoidal category such that the monoidal product is bilinear on objects. The monoidal
product bifunctor ⊗mod is defined on objects in Definition 6.4.6, and on morphisms in Proposition 6.4.7.

If, in addition, the braiding γ is symmetric and (A,∆) is cocommutative, then the module category is
symmetric braided when equipped with the inherited braiding.

2. If (A,∇, η) is associative and unital, then ((A,∆)Comod,⊗comod, (1, ρ
−1
A ◦η), α, λ, ρ) is a pre-additive

(or RMod-enriched) monoidal category such that the monoidal product is bilinear on objects.

If, in addition, the braiding γ is symmetric and (A,∇) is commutative, then the module category is
symmetric braided when equipped with the inherited braiding.

Proof. Observe first that the category (A,∇)Mod is pre-additive (or, more generally, RMod-enriched) be-
cause the sum of two module morphisms again satisfies the module compatibility condition (6.29), by bilin-
earity of composition.

Moreover, as the tensor product of morphisms in (A,∇)Mod is inherited from that in C, it follows that
⊗ : (A,∇)Mod× (A,∇)Mod → (A,∇)Mod is a bifunctor and bilinear on morphisms.

Note that if we can show that the monoidal associator α, the unitors λ and ρ, and the braiding γ are defined
in (A,∇)Mod (in the sense that their components corresponding to modules are module morphisms), then it
follows immediately that these are natural transformations satisfying all the required coherence conditions.

Let (X, ▷X), (Y, ▷Y ), (Z, ▷Z) be (A,∇)-modules, we will prove that α(X,Y,Z) is a module morphism from
((X, ▷X)⊗mod (Y, ▷Y ))⊗mod (Z, ▷Z) to (X, ▷X)⊗mod ((Y, ▷Y )⊗mod (Z, ▷Z)). To prove this, we have to
know that the following diagram commutes

A⊗ ((X ⊗ Y )⊗ Z) A⊗ (X ⊗ (Y ⊗ Z))

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z)

▷(X⊗Y )⊗Z

idA⊗α(X,Y,Z)

▷X⊗(Y ⊗Z)

α(X,Y,Z)

. (6.129)

In string diagrams, we have

▷(X⊗Y )⊗Z =

A X Y Z

X Y Z

. (6.130)
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As (A,∆) is a coassociative coalgebra (6.9), we have

A X Y Z

X Y Z

=

A X Y Z

X Y Z

. (6.131)

Using the hexagon identity (3.80) and the naturality of the braiding (3.79), we then find

A X Y Z

X Y Z

=

A X Y Z

X Y Z

= ▷X⊗(Y⊗Z), (6.132)

which is what we had to prove.

Next, we will prove that λX is a morphism from (1, ε ◦ ρA)⊗mod (X, ▷X) to (X, ▷X). To do so, we need to
show that the following diagram commutes

A⊗ (1⊗X) A⊗X

1⊗X X

idA⊗λX

▷1⊗X ▷X

λX

. (6.133)

To prove this, we use (3.5), (3.2), (3.1), γ(A,1) = λ−1
A ◦ρA (Lemma 3.6.5), the fact that (X, ▷X) is a left module
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(6.19), and the fact that ε : A → 1 is a counit (6.10), to obtain

λX ◦ (▷1 ⊗ ▷X) ◦ α−1
(A,1,A⊗X) ◦ (idA ⊗ α(1,A,X)) ◦ (idA ⊗ (γ(A,1) ⊗ idX))

◦ (idA ⊗ α−1
(A,1,X)) ◦ α(A,A,1⊗X) ◦ (∆⊗ id1⊗X)

= λX ◦ (ε⊗ ▷X) ◦ (idA ⊗ λA⊗X) ◦ (idA ⊗ α(1,A,X)) ◦ (idA ⊗ (γ(A,1) ⊗ idX))

◦ (idA ⊗ α−1
(A,1,X)) ◦ α(A,A,1⊗X) ◦ (∆⊗ id1⊗X)

= λX ◦ (ε⊗ ▷X) ◦ (idA ⊗ (λA ⊗ idX)) ◦ (idA ⊗ (γ(A,1) ⊗ idX))

◦ (idA ⊗ α−1
(A,1,X)) ◦ α(A,A,1⊗X) ◦ (∆⊗ id1⊗X)

= λX ◦ (ε⊗ ▷X) ◦ (idA ⊗ (ρA ⊗ idX)) ◦ (idA ⊗ α−1
(A,1,X)) ◦ α(A,A,1⊗X)

= λX ◦ (ε⊗ ▷X) ◦ (idA ⊗ (idA ⊗ λX)) ◦ α(A,A,1⊗X) ◦ (∆⊗ id1⊗X)

= λX ◦ (ε⊗ ▷X) ◦ α(A,A,X) ◦ (idA⊗A ⊗ λX) ◦ (∆⊗ id1⊗X)

= λX ◦ (ε⊗ ▷X) ◦ α(A,A,X) ◦ (∆⊗ idX) ◦ (idA ⊗ λX)

= ▷X ◦ λA⊗X ◦ (ε⊗ idA⊗X) ◦ α(A,A,X) ◦ (∆⊗ idX) ◦ (idA ⊗ λX)

= ▷X ◦ λA⊗X ◦ α(1,A,X) ◦ ((ε⊗ idA)⊗ idX) ◦ (∆⊗ idX) ◦ (idA ⊗ λX)

= ▷X ◦ λA⊗X ◦ α(1,A,X) ◦ (λ−1
A ⊗ idX) ◦ (idA ⊗ λX)

= ▷X ◦ (idA ⊗ λX)

. (6.134)

Similarly, we prove that ρX is a morphism from (X, ▷X)⊗mod (1, ε ◦ ρA) to (X, ▷X).

Finally, we want to prove that γ(X,Y ) is a morphism from (X, ▷X)⊗mod (Y, ▷Y ) to (Y, ▷Y )⊗mod (X, ▷X) if
γ is symmetric and (A,∆) is cocommutative. This translates to the following commutative diagram

A⊗ (X ⊗ Y ) A⊗ (Y ⊗X)

X ⊗ Y Y ⊗X

idA⊗γ(X,Y )

▷X⊗Y ▷Y ⊗X

γ(X,Y )

. (6.135)

Graphically, we have

γ(X,Y ) ◦ ▷X⊗Y =

A X Y

Y X

. (6.136)

Naturality of the braiding (3.79), the hexagon identity (3.80), symmetry of the braiding, and cocommutativity
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of (A,∆) give

A X Y

Y X

=

A X Y

Y X

=

A YX

Y X

= ▷Y⊗X ◦ (idA ⊗ γ(X,Y )). (6.137)

■

We are interested in symmetric tensor categories, so we will determine whether module categories over Hopf
algebras in symmetric tensor categories are themselves symmetric tensor categories.

Proposition 6.4.9. Let (C,⊗,1, α, λ, ρ, γ) be a pre-additive (or RMod-enriched, with R some commutative
ring) braided monoidal category such that the monoidal product is bilinear on morphisms, and let (A,∇,∆) be
a bialgebra in this category.

1. Suppose that (A,∆, ε) is coassociative and counital. We will discuss the category (A,∇)Mod equipped
with the pre-additive (or RMod-enriched) monoidal structure introduced above.

a) If C is additive, then (A,∇)Mod is additive.

b) If C is pre-abelian, then (A,∇)Mod is pre-abelian.

c) If C is abelian, then (A,∇)Mod is abelian. Furthermore, if the monoidal product is biexact on C,
then it is biexact on (A,∇)Mod.

d) If C is left rigid (equivalently, right rigid or rigid through Proposition 3.6.7) and (A,∇, η,∆, ε, S)
is a Hopf algebra with an invertible antipode, then (A,∇)Mod is left rigid. If S is invertible, then
(A,∇)Mod is rigid.

e) If C is a (multi)tensor category and (A,∇, η,∆, ε, S) is a Hopf algebra, then (A,∇)Mod is a
(multi)tensor category.

f) If C is a symmetric (multi)tensor category and (A,∇, η,∆, ε, S) is a cocommutative Hopf algebra
with an invertible antipode, then (A,∇)Mod is a symmetric (multi)tensor category.

2. Suppose that (A,∇, η) is associative and unital. We will discuss the category (A,∆)Comod equipped
with the pre-additive (or RMod-enriched) monoidal structure introduced above.

a) If C is additive, then (A,∆)Comod is additive.

b) If C is pre-abelian, then (A,∆)Comod is pre-abelian.

c) If C is abelian, then (A,∆)Comod is abelian. Furthermore, if the monoidal product is biexact on C,
then it is biexact on (A,∆)Comod.

d) If C is rigid (equivalently, left or right rigid) and (A,∇, η,∆, ε, S) is a Hopf algebra, then (A,∆)Comod
is left rigid. If S is invertible, then (A,∆)Comod is rigid.

e) If C is a (multi)tensor category and (A,∇, η,∆, ε, S) is a Hopf algebra with an invertible antipode,
then (A,∆)Comod is a (multi)tensor category.

154



6 Algebras in Monoidal Categories

f) If C is a symmetric (multi)tensor category and (A,∇, η,∆, ε, S) is a commutative Hopf algebra
with an invertible antipode, then (A,∆)Comod is a symmetric (multi)tensor category.

Proof. For (1a), we need to show that biproducts of modules are modules and that the null object is a module.
Both statements follow from the bilinearity of the monoidal product ⊗ on morphisms (Proposition 4.2.1).

For (1b), we have to prove that kernels and cokernels of module morphisms are modules, and that the kernel
and cokernel morphisms are morphism of modules. We will prove this for kernels. Let f : (X, ▷X) → (Y, ▷Y )
be a morphism of modules. In C, this morphism has a kernel (Ker(f), ker(f)). We then have f ◦▷X ◦ (idA⊗
ker(f)) = ▷Y ◦ (idA ⊗ f) ◦ (idA ⊗ ker(f)) = 0, which implies that there is a uniquely induced morphism
▷Ker(f) : A⊗Ker(f) → Ker(f) making the following diagram commute

A⊗Ker(f) A⊗X X Y

Ker(f)

idA⊗ker(f)

∃!▷Ker(f)

▷X f

ker(f)
. (6.138)

We now have to prove that (Ker(f), ▷Ker(f)) is a left module, i.e. that ▷Ker(f) ◦ (idA ⊗ ▷Ker(f)) = ▷Ker(f) ◦
(∇⊗ idKer(f)). As (X, ▷X) is a left module, we find

ker(f) ◦ ▷Ker(f) ◦ (∇⊗ idKer(f)) = ▷X ◦ (idA ⊗ ker(f)) ◦ (∇⊗ idKer(f))

= ▷X ◦ (∇⊗ idX) ◦ (idA⊗A ⊗ ker(f))

= ▷X ◦ (idA ⊗ ▷X) ◦ (idA⊗A ⊗ ker(f))

= ▷X ◦ (idA ⊗ (ker(f) ◦ ▷Ker(f)))

= ker(f) ◦ ▷Ker(f) ◦ (idA ⊗ ▷Ker(f))

. (6.139)

As ker(f) is a monomorphism, we conclude that (Ker(f), ▷Ker(f)) is indeed a module. The commutativity
of (6.138) also implies that ker(f) is a module morphism (Ker(f), ▷Ker(f)) → (X, ▷X). Combining these
two facts shows that ((Ker(f), ▷Ker(f)), ker(f)) is a kernel of f in the category of modules.

The first statement of (1c) follows from (1b). Suppose that ⊗ is biexact in C, and let (Z, ▷Z) be an arbitrary
module. As ⊗ is biexact, we know that Ker(f ⊗ idZ) = Ker(f) ⊗ Z and ker(f) ⊗ idZ = ker(f ⊗ idZ).
All that is left for us to prove that (Ker(f)⊗ Z, ▷Ker(f)⊗Z) is the kernel of f ⊗ idZ , is then that ▷Ker(f)⊗Z

makes the following diagram commute

A⊗Ker(f)⊗ Z A⊗X ⊗ Z X ⊗ Z Y

Ker(f)⊗ Z

idA⊗ker(f)⊗idZ

▷Ker(f)⊗Z

▷X⊗Z f⊗idZ

ker(f)⊗idZ

. (6.140)

This follows from the fact that ker(f) is a morphism of modules, which implies that ker(f) ⊗ idZ is also a
morphism of modules, by Proposition 6.4.8. Similarly, we show that the monoidal product ⊗mod preserves
kernels in the second argument, as well as cokernels in both the first and second argument. We conclude
that ⊗mod is biexact.

We will now prove (1d), so suppose that C is left rigid (equivalently, rigid or right rigid) and that there exists
an antipode S : A → A which is such that S ◦ ∇ = ∇ ◦ (S ⊗ S) ◦ γ(A,A) through Lemma 6.4.5. We define
the left dual of a module (X, ▷X) as the object X∗, equipped with the action

▷X∗ =
S

X∗A

X∗

. (6.141)
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First, we have to prove that (X∗, ▷X∗) is a module. We have

▷X∗ ◦ (idA ⊗ ▷X∗) =

S

X∗A

S

X∗

A

X∗

. (6.142)

Applying the naturality of the braiding (3.79) and the hexagon identity (3.77), we obtain

▷X∗ ◦ (idA ⊗ ▷X∗) =

S S

X∗AA

X∗

. (6.143)
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Using the zigzag identity (3.18) and the module identity (6.21), we obtain

S S

X∗AA

X∗

= S S

X∗AA

X∗

. (6.144)

Applying ∇ ◦ (S ⊗ S) ◦ γ(A,A) = S ◦ ∇, we see that

S S

X∗AA

X∗

=

S

X∗AA

X∗

. (6.145)

Applying the naturality of the braiding (3.79), we finally get

S

X∗AA

X∗

= S

A A X∗

X∗

= ▷X∗ ◦ (∇⊗ idX∗). (6.146)
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To conclude that (X∗, ▷X∗) is a left dual of (X, ▷X), we also have to show that evX and coevX are morphisms
in (A,∇)Mod. We thus have to prove that the following diagrams commute

A⊗ (X∗ ⊗X) A⊗ 1 A⊗ 1 A⊗ (X ⊗X∗)

X∗ ⊗X 1 1 X ⊗X∗

idA⊗evX

▷X∗⊗X ▷1

idA⊗coevX

▷1 ▷X⊗X∗

evX coevX

. (6.147)

We will only prove the commutativity of the first of those two diagrams. We have

evX ◦ ▷X∗⊗X =

S

A X∗ X

=

S

A X∗ X

= S

X∗A X

.

(6.148)
Using the antipode identity (6.111), and the fact that η is a unit for (A,∇), this becomes

evX ◦ ▷X∗⊗X =

ε

= ▷1 ◦ (idA ⊗ evX). (6.149)

This proves (1d).

Finally, (1e) and (1f) follow from the other statements and Proposition 6.4.8. ■

6.5 Affine group schemes in categories

Using the theory of algebras built up in this chapter, we can define affine algebraic groups as in [Med25]. We
will provide only the most basic definitions, as these, combined with our discussion on categories of modules
and comodules over Hopf algebras, suffice to understand the statements given in Section 4.5.3.

Definition 6.5.1 (Affine group schemes and affine algebraic groups, [Med25, Definition 5.1.1]). Let
C be a symmetric tensor category. An affine group scheme in C or Cind is a functor

G : AssCommUnitAlgCind → Grp such that ForgetfulSetGrp ◦G is representable. (6.150)

If G is representable by a finitely generated algebra, then G is called an affine group scheme of finite type, or
an affine algebraic group.

The representing algebra (unique up to isomorphism) is called the coordinate algebra and is denoted O[G].
This algebra can be equipped with the structure of a commutative Hopf algebra in the standard way: we have
natural transformations
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1. mult : G×G → G where

mult(A,µ,η) is the product on the group G(A,µ, η), (6.151)

using the coordinate algebra we can interpret this as a natural transformation

mult : HomAssCommUnitAlgCind

(
O[G]⊗O[G] ,−

)
→ HomAssCommUnitAlgCind

(
O[G] ,−

)
,

(6.152)
hence as a morphism

∆ : O[G] → O[G]⊗O[G] (6.153)

through the Yoneda lemma 1.3.1,

2. inv : G → G where
inv(A,µ,η) is the inversion on the group G(A,µ, η), (6.154)

using the coordinate algebra we can interpret this as a natural transformation

inv : HomAssCommUnitAlgCind

(
O[G] ,−

)
→ HomAssCommUnitAlgCind

(
O[G] ,−

)
, (6.155)

hence as a morphism
S : O[G] → O[G] , (6.156)

3. unit : 1 → G where

unit(A,µ,η) maps the trivial group to the unit of the group G(A,µ, η), (6.157)

using the coordinate algebra we can intepret this as a natural transformation

unit : HomAssCommUnitAlgCind
(1,−) → HomAssCommUnitAlgCind

(
O[G] ,−

)
, (6.158)

hence as a morphism
ε : 1 → O[G] . (6.159)

Lemma 6.5.2 ([Med25, Lemma 5.1.5]). Let C be a symmetric tensor category. A functor

F : AssCommUnitAlgCind → Set

is the composition of ForgetfulSetGrp with an affine group scheme G if and only if there exist natural transforma-
tions

mult : G×G → G, (6.160)
inv : G → G, (6.161)
unit : 1 → G, (6.162)

such that the following diagrams commute

G×G×G G×G

G×G G

idG×mult

mult×idG mult

mult

, (6.163)

G× 1 G×G 1×G G×G

G G G G

idG×unit

mult

unit×idG

mult

idG idG

, (6.164)

G G×G G×G G G×G G×G

1 G 1 G

diag idG×inv

mult

diag inv×idG

mult

unit unit

. (6.165)
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Proof. This follows by evaluating on objects and realising that the commutative diagrams simply express the
group axioms. ■

Proposition 6.5.3 ([Med25, Proposition 5.1.6]). Let C be a symmetric tensor category, and letA be a finitely
generated commutative unital associative algebra in C. Then A is the coordinate algebra of an affine algebraic
group if and only if it admits a Hopf algebra structure. Moreover, for any affine algebraic group, the associated
coordinate algebra carries the Hopf algebra structure described above.

Proof. This follows from the above Lemma 6.5.2 and the contravariant Yoneda embedding 1.3.3 (i.e. the
Yoneda lemma). ■

A natural question is how much more general affine group schemes or affine algebraic groups can be in
symmetric tensor categories.

In the final chapter, we mention a result by Siddharth Venkatesh [Ven23, Theorem 1.2], which shows that
affine algebraic groups in the important Verlinde category are only as general as the Lie algebras they cor-
respond to. That is, their additional generality precisely matches that of Lie algebras in this category.
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7 The Verlinde category

In this chapter we discuss the (universal) Verlinde category over an algebraically closed field of characteristic
p > 0, first introduced in [GK92; GM94]. Our discussion of this category is based on the discussions in [Ost20;
Kan24].

There are a few equivalent definitions of the Verlinde category, but the common ground between these defi-
nitions is that they describe the category as the semisimplification of a category of modules.

7.1 Representations of the linear algebraic group αp

We will construct the Verlinde category as the semisimplification of the category of representations of the
affine (linear) algebraic group αp. Proposition 6.4.9 shows that this is a symmetric tensor category.

The discussion in this section is based on the description of the Verlinde category in [Kan24, §3.2].

7.1.1 Description of the linear algebraic group αp and its coordinate algebra

Definition 7.1.1 (The affine algebraic group αp, [Med25, Examples 5.1.2 (7)]). Let K be a field of
characteristic p > 0. The affine algebraic group αp is defined as

αp : AssCommUnitAlgK → Grp : (A,+, ·) 7→ ({a ∈ A | ap = 0},+). (7.1)

The coordinate algebra of this affine algebraic group (we refer to [Med25]) is O[αp] = K[αp] = K[t]/(tp),
with

1. the standard polynomial multiplication

∇ : K[t]/(tp)⊗K[t]/(tp) → K[t]/(tp) : tm ⊗ tn 7→ tm+n, (7.2)

2. the standard unit
η : K → K[t]/(tp) : 1 7→ 1, (7.3)

3. the comultiplication

∆ : K[t]/(tp) → K[t]/(tp)⊗K[t]/(tp) : tn 7→
n∑

k=0

(
n

k

)
tk ⊗ tn−k = (1⊗ t+ t⊗ 1)n, (7.4)

4. the counit
ε : K[t]/(tp) → K : 1 7→ 1 and t 7→ 0, (7.5)

5. the antipode
S : K[t]/(tp) → K[t]/(tp) : t 7→ −t. (7.6)
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It is clear that this is a commutative and cocommutative Hopf algebra.

We want to study the category of representations ofαp,FinRepK(αp), or equivalently the category of finite-
dimensional comodules on the Hopf algebra O

[
αp

]
= K[αp] = K[t]/(tp), K[αp]FinComod. Comodules on

a Hopf algebra are equivalent to modules on the dual of this Hopf algebra, so we will work with the category
of modules K[αp]

∗, K[αp]∗FinMod.

We will now describe explicitly what the Hopf algebra structure on K[αp]
∗ is. As a vector space, we have

K[αp]
∗ = HomVectK

(
K[αp],K

)
, with a basis {fn | n = 0, . . . , p − 1} such that fi(tj) = δij for i, j ∈

{0, . . . , p− 1}. For the operations on the dual we find

1. the multiplication on K[αp]
∗ is the dual of the comultiplication on K[αp]

∆∗ = − ◦∆ : K[αp]
∗ ⊗K[αp]

∗ → K[αp]
∗ : fm ⊗ fn 7→

(
m+ n

n

)
fm+n, (7.7)

2. the unit on K[αp]
∗ is given by the dual of the counit on K[αp]

ε∗ = − ◦ ε : K → K[αp]
∗ : 1 7→ f0, (7.8)

3. the comultiplication on K[αp]
∗ is given by the dual of the multiplication on K[αp]

∇∗ = − ◦ ∇ : K[αp]
∗ → K[αp]

∗ ⊗K[αp]
∗ : fn 7→

n∑
k=0

fk ⊗ fn−k, (7.9)

4. the counit on K[αp]
∗ is given by the dual of the unit on K[αp]

η∗ = − ◦ η : K[αp]
∗ → K : f0 7→ 1 and fn 7→ 0 for n ≥ 1, (7.10)

5. the antipode on K[αp]
∗ is given by the dual of the antipode on K[αp]

S∗ = − ◦ S : K[αp]
∗ → K[αp]

∗ : fn 7→ −fn. (7.11)

This means that, after rescaling to the basis gn := n!fn, we find the original Hopf algebra K[αp] through the
isomorphism gn 7→ tn.

We can thus conclude that comodules and modules over O
[
αp

]
= K[αp] are the same thing.

7.1.2 The abelian structure on the category of modules over K[αp] = K[t]/(tp)

As an abelian category, FinRepK(αp) = K[αp]FinMod is simply the category of K[t]/(tp)-modules, where
K[t]/(tp) is considered solely as an algebra with the usual polynomial multiplication.

Lemma 7.1.2. Let K be an algebraically closed field. The indecomposable modules in K[t]/(tp)FinMod are the
modules

Jk := K[t]/(tk) equipped with the polynomial product, for k = 1, . . . , p. (7.12)

Proof. As K is an algebraically closed field, we know that any K[t]-module decomposes as K[t]/(t−λ1)
k1 ⊕

· · · ⊕ K[t]/(t − λn)
kn with ki ≥ 1. This implies that any K[t]/(tp)-module decomposes as K[t]/(tk1) ⊕

· · · ⊕K[t]/(tkn) with 1 ≤ t ≤ p. Indeed, K[t]/(t− λ)k is a K[t]/(tp)-module if and only if tp acting on this
module is zero, i.e. if tp ∈ ((t− λ)k).

The modules Jk = K[t]/(tk) are indecomposable as they are generated by a single element. ■

Corollary 5.5.4 implies that Jp gets mapped to a null object under the semisimplification functor (because
the characteristic of the field is p), and that this is the only indecomposable module that gets mapped to a
null object.
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7.1.3 The monoidal structure on the category of modules over K[αp] = K[t]/(tp)

Because K[αp] is a bialgebra, Definition 6.4.6 defines a tensor product on the category of modules. For our
Hopf algebra this results in

t ▷ (x⊗ y) = (1⊗ t+ t⊗ 1) · (x⊗ y) = x⊗ ty + tx⊗ y. (7.13)

Since the monoidal product is bilinear on morphisms, it suffices to determine the tensor products of inde-
composable objects in order to compute general tensor products.

Lemma 7.1.3. Let K be an algebraically closed field of characteristic p > 0. Let Jk = K[t]/(tk) be the
indecomposable modules of the category K[t]/(tp)FinMod equipped with the tensor produced induced by the
Hopf algebra structure on K[αp] = K[t]/(tp). J1 is the monoidal unit, and we have

Jk ⊗ Jℓ =

min(k,ℓ,p−k,p−ℓ)⊕
i=1

J|k−ℓ|+2i−1 ⊕ nkℓJp (7.14)

for some nkℓ ≥ 0.

Furthermore, these indecomposable objects are self-dual, i.e. Jk∗ ∼= Jk .

Proof. Proposition 6.4.8 shows that the monoidal unit for this tensor product is (K, ε ◦ ρK[αp]). This implies
that

t ▷ λ = (ε ◦ ρK[αp])(t⊗ λ) = ε(λt) = 0. (7.15)

We conclude that J1 is the unit object for this tensor product.

We will now prove that J2 ⊗ Jk = Jk−1 ⊕ Jk+1 for 1 < k < p and J2 ⊗ Jp = Jp ⊕ Jp.

The second statement is actually rather simple to prove. We know that Jp gets mapped to a null object under
the semisimplification functor. As the semisimplification functor is monoidal, this implies that J2 ⊗ Jp gets
mapped to a null object. This implies that the decomposition of J2 ⊗ Jp into indecomposable module can
only consist of copies of Jp, and thus that J2⊗Jp = Jp⊕Jp as the dimension as a vector space has to equal
2p.

Suppose that 1 < k < p. We will show that there is an explicit decomposition

J2 ⊗ Jk = K[t]/(t2)⊗K[t]/(tk) = ⟨(k − 1)t⊗ 1− 1⊗ t⟩ ⊕ ⟨1⊗ 1⟩ = Jk−1 ⊕ Jk+1, (7.16)

where ⟨v⟩ is the module generated by the vector v.

It is not hard to see that tk ▷ (1⊗1) = kt⊗ tk−1 and tk−2 ▷ ((k−1)t⊗1−1⊗ t) = t⊗ tk−2−1⊗ tk−1. This
implies that these span copies of Jk+1 and Jk−1 respectively, but it does not yet show that these modules
are direct summands of J2 ⊗ Jk or that they intersect in zero. If we can show that these copies of Jk+1

and Jk−1 are disjoint, then we have found a 2k-dimensional submodule of J2 ⊗ Jk , which implies that we
have a decomposition J2 ⊗ Jk = Jk−1 ⊕ Jk+1. To prove this, we need to prove that the vectors generated
by 1 ⊗ 1 and (k − 1)t ⊗ 1 − 1 ⊗ t are linearly independent in every degree. In degree n ≥ 1 we have
tn ▷ (1⊗ 1) = nt⊗ tn−1 + 1⊗ tn and tn−1 ▷ ((k− 1)t⊗ 1− 1⊗ t) = (k− 1− n)t⊗ tn−1 − 1⊗ tn. These
vectors are clearly linearly independent.

We can use this to prove the structure of general tensor products inductively. Indeed, we now have descrip-
tions of Jk ⊗ Jℓ for k = 1, 2 and ℓ arbitrary, and this follows (7.14). Suppose now that we know Jn ⊗ Jℓ for
all n < k and all ℓ, we will show that we can deduce the structure of Jk ⊗ Jℓ. By using the braiding, we see
that it is enough to give the structure of Jk ⊗ Jℓ when k < ℓ < p.

We know that J2 ⊗ Jk−1 = Jk−2 ⊕ Jk , which implies that

(Jk−2 ⊕ Jk)⊗ Jℓ = J2 ⊗ Jk−1 ⊗ Jℓ. (7.17)
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We have

Jk−1 ⊗ Jℓ =

min(k−1,ℓ,p−k+1,p−ℓ)⊕
i=1

J|k−1−ℓ|+2i−1 ⊕ nk−1 ℓJp, (7.18)

which implies that

J2 ⊗ Jk−1 ⊗ Jℓ =

min(k−1,ℓ,p−k+1,p−ℓ)⊕
i=1

(J|k−1−ℓ|+2i−2 ⊕ J|k−1−ℓ|+2i)⊕ 2nk−1 ℓJp

=

min(k−1,ℓ,p−k+1,p−ℓ)⊕
i=1

(J|k−ℓ|+2i−1 ⊕ J|k−2−ℓ|+2i−1)⊕ 2nk−1 ℓJp

=

min(k−2,ℓ,p−k+2,p−ℓ)⊕
i=1

J|k−2−ℓ|+2i−1 ⊕
min(k,ℓ,p−k,p−ℓ)⊕

i=1

J|k−ℓ|+2i−1 ⊕ 2nk−1 ℓJp

= (Jk−2 ⊗ Jℓ)⊕ (Jk ⊗ Jℓ)

. (7.19)

Because of the Krull-Schmidt theorem 2.4.4, we know that this implies that Jk⊗Jℓ does indeed satisfy (7.14).

The indecomposable objects Jk are self-dual as Jk and Jk
∗ are isomorphic as vector spaces and Jk is the

unique indecomposable object of vector space dimension k. Alternatively, the antipode S only switches the
sign, which also implies that Jk∗ ∼= Jk . ■

Table 7.1 shows the tensor product structure of the indecomposable objects inFinRepK(αp) = K[αp]FinMod
for algebraically closed fields K of characteristic p ≥ 13, we have replaced Lk with k in this table.

⊗ 1 2 3 4 5 6 7 . . .
1 1 2 3 4 5 6 7 . . .
2 2 1⊕3 2⊕4 3⊕5 4⊕6 5⊕7 6⊕8 . . .
3 3 2⊕4 1⊕3⊕5 2⊕4⊕6 3⊕5⊕7 4⊕6⊕8 5⊕7⊕9 . . .
4 4 3⊕5 2⊕4⊕6 1⊕3⊕5⊕7 2⊕4⊕6⊕8 3⊕5⊕7⊕9 4⊕6⊕8⊕10 . . .
5 5 4⊕6 3⊕5⊕7 2⊕4⊕6⊕8 1⊕3⊕5⊕7⊕9 2⊕4⊕6⊕8⊕10 3⊕5⊕7⊕9⊕11 . . .
6 6 5⊕7 4⊕6⊕8 3⊕5⊕7⊕9 2⊕4⊕6⊕8⊕10 1⊕3⊕5⊕7⊕9⊕11 2⊕4⊕6⊕8⊕10⊕12 . . .
7 7 6⊕8 5⊕7⊕9 4⊕6⊕8⊕10 3⊕5⊕7⊕9⊕11 2⊕4⊕6⊕8⊕10⊕12 1⊕3⊕5⊕7⊕9⊕11⊕13 . . .
...

...
...

...
...

...
...

...
...

Table 7.1: Tensor product structure of indecomposable representations of αp over an algebraically closed
field of characteristic p ≥ 13.

7.2 The Verlinde category Verp

7.2.1 The abelian and monoidal structure of Verp

The Verlinde category Verp is the semisimplification of FinRepK(αp) = K[αp]FinMod, in particular the
braiding γ on Verp is the image of the braiding γ on K[αp]FinMod (which is just the swap map) under the
semisimplification functor K[αp]FinMod → Verp. As K[αp]FinMod is a symmetric tensor category, and it
has a finite set of (isomorphism classes of) indecomposable objects, we know that Verp is a symmetric fusion
category. The above results lead to the following proposition.

Proposition 7.2.1. Let p > 0 be prime. The Verlinde category Verp is a symmetric fusion category with p− 1
(isomorphism classes of) simple objects Lk for k = 1, . . . , p− 1. L1 is the monoidal unit for this category, and
these simple objects are self-dual, such that dim(Lk) = k, and such that they satisfy the following truncated
Clebsch-Gordan rule

Lk ⊗ Lℓ =

min(k,ℓ,p−k,p−ℓ)⊕
i=1

L|k−ℓ|+2i−1. (7.20)
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Proof. This follows from Lemma 7.1.2 and Lemma 7.1.3 by setting Lk = Jk , i.e. the image of the indecom-
posable modules Jk under the semisimplification functor K[αp]FinMod → Verp. ■

Tables 7.2, 7.3, 7.4, and 7.5 show the tensor product structure for the Verlinde categories in low characteris-
tics.

⊗ 1
1 1

Table 7.2: Tensor product structure of Ver2.

⊗ 1 2
1 1 2
2 2 1

Table 7.3: Tensor product structure of Ver3.

⊗ 1 2 3 4
1 1 2 3 4
2 2 1⊕3 2⊕4 3
3 3 2⊕4 1⊕3 2
4 4 3 2 1

Table 7.4: Tensor product structure of Ver5.

⊗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1⊕3 2⊕4 3⊕5 4⊕6 5
3 3 2⊕4 1⊕3⊕5 2⊕4⊕6 3⊕5 4
4 4 3⊕5 2⊕4⊕6 1⊕3⊕5 2⊕4 3
5 5 4⊕6 3⊕5 2⊕4 1⊕3 2
6 6 5 4 3 2 1

Table 7.5: Tensor product structure of Ver7.

In an online seminar on tensor categories, Kevin Coulembier gave the following very simple argument that
Verlinde categories are not “classical”. Here, we refer to a tensor category as classical when there is a tensor
functor to a category of vector spaces. Suppose that there is a tensor functor F : Verp → VectK for p ≥ 5.
We have an object L3 ∈ Ob

(
Verp

)
for which L3 ⊗ L3 = L1 ⊕ L3. As F is a tensor functor, we know that

F (L3)⊗F (L3) = F (L1)⊕F (L3). As L1 is the monoidal unit for Verp, we conclude that F (L1) = K. This
implies that dim(L3) = dim(F (L3)) satisfies x2 = 1 + x, which would imply that dim(L3) is the golden
ratio!

7.2.2 Fusion subcategories of Verp

As shown in [Ost20, §3], the Verlinde category Verp has precisely four fusion subcategories when p ≥ 5:

1. the category of finite-dimension vector spaces FinVectK, which is the subcategory generated by the
monoidal unit L1,

2. the category of finite-dimensional super-vector spaces FinsVectK, which is the subcategory gener-
ated by L1 and Lp−1, an equivalence between these categories will follow from Lemma 8.1.1,

3. Ver+p , which is defined as the subcategory generated by L3, this fusion category contains all the odd
dimension simple objects,

4. Verp.
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7 The Verlinde category

It is not hard to prove this after noting that a fusion subcategory of Verp is equal to Verp if and only if it
contains a simple object that is of even dimension and not equal to Lp−1.

When p = 2, these categories all coincide, and when p = 3, sVectK, Ver+3 and Ver3 coincide.

7.3 Alternative constructions for the Verlinde category

7.3.1 Representations of the cyclic group on p elements Cp

Alternatively, the Verlinde category can be constructed as the semisimplification of the finite-dimensional
representations of the cyclic group on p elements, Cp, over an algebraically closed field of characteristic
p > 0.

The Hopf algebra we consider is then the group algebra KCp = K[x]/(xp − 1), where

1. the multiplication is the standard polynomial multiplication

∇ : K[x]/(xp − 1)⊗K[x]/(xp − 1) → K[x]/(xp − 1) : xm ⊗ xn 7→ xm+n, (7.21)

2. the unit is the standard unit
η : K → K[x]/(xp − 1) : λ 7→ λ, (7.22)

3. the comultiplication is

∆ : K[x]/(xp − 1) → K[x]/(xp − 1)⊗K[x]/(xp − 1) : xn 7→ xn ⊗ xn, (7.23)

4. the counit is
ε : K[x]/(xp − 1) → K : 1 7→ 1 and xn 7→ 0 for n ≥ 1. (7.24)

It is clear that the underlying algebra is isomorphic to K[t]/(tp). In particular, this implies that the abelian
structures of the representation categories of Cp and αp are equivalent. However, the comultiplication on
the Hopf algebras is not the same, which results in different tensor products.

Nevertheless, it turns out that the decomposition of the indecomposable representations follows the same
rule as in (7.14) (see [Gre62]). This shows that the semisimplification of this category is equivalent to the
semisimplification of the category of representations of αp.

7.3.2 Tilting modules on SL2(K)

A final construction of the Verlinde category Verp is as the semisimplification of the category of finite-
dimensional tilting modules over SL2(K) (see, for example, [Etingof2018]). We will not discuss this con-
struction, but it is important to mention it, as it is precisely this construction that can be used to construct
the higher Verlinde categories Verpn (see [BE19; BEO23; Cou21]).
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8 Algebras in the Verlinde Category

In this chapter, we discuss certain algebras in the Verlinde categoryVerp. Our approach is inspired by [Kan24;
EEK25], focusing primarily on the construction of algebras in Verp via the semisimplification functor S :
FinRepK(αp) → Verp applied to algebras which are representations of the linear algebraic group αp over
an algebraically closed field K of characteristic p > 0.

Our discussion in the previous Chapter 7 shows that an algebra in FinRepK(αp) = K[αp]FinMod is a
K-algebra (A,µ), which implies that µ : A⊗K A → A is a linear map, such that

1. A is a K[t]/(tp)-module,

2. µ : A⊗K A → A is a homomorphism of modules, i.e. µ(t ▷ (x⊗ y)) = t ▷ µ(x⊗ y), which becomes
the following in standard notation

(tx)y + x(ty) = t(xy). (8.1)

We conclude that a K-algebra is an algebra in FinRepK(αp) = K[αp]FinMod if and only if it is equipped
with a nilpotent derivation of order ≤ p.

Remark 8.0.1. Note that a nilpotent derivation ∂ of order ≤ p defines an automorphism of order p by setting
σ := exp(∂) =

∑p−1
n=0

1
n!∂

n. Indeed, this morphism has the inverse exp(−∂) =
∑p−1

m=0
(−1)m

m! ∂m, and

σ(xy) =

p−1∑
n=0

1

n!
∂n(xy)

=

p−1∑
n=0

1

n!

n∑
k=0

(
n

k

)
(∂kx)(∂n−ky)

=

p−1∑
n=0

n∑
k=0

1

k!(n− k)!
(∂kx)(∂n−ky)

=

p−1∑
k=0

p−1∑
m=0

1

k!m!
(∂kx)(∂my)

= σ(x)σ(y)

. (8.2)

Applying this procedure to Lie or Jordan algebras (A,µ) equipped with nilpotent derivation or automor-
phisms of order p, we can construct Lie and Jordan superalgebras (As, µs) by taking the component of the
semisimplified algebra (A,µ) = (S(A), S(µ)) in the fusion subcategory sVectK ⊆ Verp. This is the con-
struction used in [Kan24; EEK25].

8.1 Simple objects in Verp

In this section we plan to study algebras on simple objects in Verp. Note that algebras in abelian categories
enriched over FinVectK, where K is an algebraically closed field, always have trivial automorphism groups
by Schur’s lemma 2.4.10.

Before turning to the construction of these algebras, we first examine the braiding on Verp induced by the
braiding (swap map) on FinRepK(αp) = K[αp]FinMod. This is motivated by the fact that braidings are
one of the main tools that allow us to extract structural information about algebras in symmetric tensor
categories.
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8 Algebras in the Verlinde Category

8.1.1 The braiding on simple objects

The following lemma can be seen as a generalisation of [Kan24, Proposition 3.2.1], although the proof is quite
different.

Lemma 8.1.1. Let K be an algebraically closed field of characteristic p > 0, and let Verp be the Verlinde
category over K. Let Lk be the simple object of dimension k in Verp, and let γ be the braiding on Verp. There
exists a decomposition into simple objects

Lk ⊗ Lk =

min(k,p−k)⊕
i=1

L2i−1 (8.3)

such that γ(Lk,Lk)
◦ incL2i−1

= (−1)k−i incL2i−1
and thus such that

γ(Lk,Lk)
=

min(k,p−k)∑
i=1

(−1)k−i incL2i−1
◦ projL2i−1

. (8.4)

Proof. We will prove a stronger statement in FinRepK(αp). Let γ be the braiding on FinRepK(αp) =

K[αp]FinMod, i.e. the swap map.

Recall from Lemma 7.1.2 and Lemma 7.1.3 that the indecomposables are uniquely indexed by their dimension
and given by Jm = K[t]/(tm), and that there is a direct sum decomposition

Jm ⊗ Jn =

min(m,n,p−m,p−n)⊕
i=1

J2i−1 ⊕ nmnJp. (8.5)

We will prove that for any indecomposable module Jk = K[t]/(tk) over R = Jp = K[t]/(tp), there exists a
decomposition into indecomposable modules

M = Jk ⊗ Jk = M0 ⊕ · · · ⊕Mk−1 (8.6)

such that
Mi

∼= J2i+1 for i < min(k, p− k), and Mi
∼= Jp for i ≥ min(k, p− k), (8.7)

and such that

γ(Jk,Jk) =

k−1∑
i=0

(−1)k−1−i incMi ◦ projMi
. (8.8)

The proof of this statement will be split into four different steps.

Step 1: We will first discuss the structure of the kernel of the action of t on M .

We have

t ▷

 k−1∑
i,j=0

aijt
i ⊗ tj

 =

k−1∑
i,j=0

aij

(
ti+1 ⊗ tj + ti ⊗ tj+1

)

=

k−1∑
i=1,j=0

ai−1 jt
i ⊗ tj +

k−1∑
i=0,j=1

ai j−1t
i ⊗ tj

=

k−2∑
i=0

(ai0t
i+1 ⊗ 1 + a0i1⊗ ti+1) +

k−1∑
i,j=1

(ai−1 j + ai j−1)t
i ⊗ tj .

(8.9)

This implies that the kernel of the action of t consists of vectors
∑k−1

i,j=0 aijt
i⊗ tj such that ai−1 j = −ai j−1

for all i, j ≥ 1, and that ai0, a0i = 0 for all i = 0, . . . , k − 2.
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8 Algebras in the Verlinde Category

This implies that if we express this vector as a matrix (aij), the kernel looks something like an upscaled
version of

Ker(t ▷−) =




0 0 0 a
0 0 −a b
0 a −b c
−a b −c d


∣∣∣∣∣∣∣∣ a, b, c, d ∈ K

 . (8.10)

The kernel is thus spanned by vectors corresponding to the anti-diagonals in the above matrix

zn := tn ⊗ tk−1 − tn+1 ⊗ tk−2 + · · ·+ (−1)k−1−ntk−1 ⊗ tn for n = 0, . . . , k − 1. (8.11)

Step 2: We will now prove that M admits a decomposition into indecomposable modules that are generated
by a symmetric or skew-symmetric homogeneous vector.

The ring R = Jp = K[t]/(tp) and the indecomposable R-modules Jm = K[t]/(tm) are graded by the degree
of polynomials, i.e. Jm = J0

m ⊕ J1
m ⊕ · · · ⊕ Jp−1

m with Jℓ
m the vector space spanned by tℓ. Similarly, the

R-module M has a grading M = M0 ⊕ M1 ⊕ · · · ⊕ M2k−2, by using the degree deg(ti ⊗ tj) = i + j. t
maps Mi to Mi+1, which shows that M equipped with the above grading is indeed a graded module over
the graded ring R. The action of t on M then gives a morphism in the category of graded modules (from M
to the shift of M ).

More generally, any R-module is graded by using the decomposition into indecomposable modules (which
are all graded). The indecomposable objects in the category of graded R-modules are then clearly the same
as the indecomposable objects in the category of R-modules.

As the category of graded modules is still Krull-Schmidt, we obtain a decomposition into indecomposable
graded R-modules

M = M1 ⊕ · · · ⊕Mn. (8.12)

As we know that M = S2M ⊕ ∧2M (Corollary 4.5.6) we may assume that the Mi are either contained in
S2M or ∧2M , which implies that their generators are symmetric or skew-symmetric.

Now, Mi
∼= Jmi

for some mi ∈ {1, . . . , p}. Mi is graded by the degree as a graded submodule of the graded
module M . Let xi be an arbitrary vector in the lowest degree summand of Mi. As xi is of lowest degree in
Mi, we know that any generator of Mi (and there exists one as Mi

∼= Jmi ) has to be a scalar multiple of xi.
In particular, xi is a generator.

Step 3: We combine the first two steps to figure out which indecomposables are symmetric and which ones
are skew-symmetric.

We know that tmi−1xi ∈ Ker(t) \ {0}, which implies without loss of generality that tmi−1xi = zj for some
j ∈ {0, . . . , k − 1} as these are the only homogeneous vectors in the kernel.

This implies that the direct summands are labelled by the zi. In particular: there are k indecomposables in
the decomposition. From now on Mi will be the indecomposable module corresponding to zi.

It is now clear that the symmetry or skew-symmetry of zi determines the symmetry or skew-symmetry of
Mi. The Mi such that zi is symmetric satisfy γ(Jk,Jk) ◦ incMi

= incMi
, and the Mi such that zi is skew-

symmetric satisfy γ(Jk,Jk) ◦ incMi
= − incMi

.

This implies that Mk−1,Mk−3, . . . are symmetric, and that Mk−2,Mk−4, . . . are skew-symmetric.

We thus find

γ(Jk,Jk) =

k−1∑
i=0

(−1)k−1−i incMi
◦ projMi

. (8.13)

Step 4: We will figure out which indecomposable Jm corresponds to which Mi.

Suppose first that k ≤ p− k. We then know that

Jk ⊗ Jk = J1 ⊕ J3 ⊕ · · · ⊕ J2k−1. (8.14)
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8 Algebras in the Verlinde Category

The homogeneous vector zn in the kernel is a vector of degree n+ k− 1. In particular, the only such vector
with a degree of order ≥ 2k − 2 is zk−1. This implies that Mk−1

∼= J2k−1 as zk−1 is the only homogeneous
vector in the kernel that could possibly be obtained through t2k−2 ▷−.

More generally, the copy of J2(k−i)−1 has to be generated by a vector of degree i or smaller (for any other
vector v we find t2(k−i)−2 ▷ v = 0). This implies that the degree of the corresponding zj has to be in
between 2k − i − 2 and 2k − 2, i.e. it has to be one of zk−i−1, zk−i−2, . . . , zk−1. Induction shows that
zk−1, zk−2, . . . , zk−i (of degree 2k − 2, 2k − 3, . . . , 2k − i − 1) already correspond to a copy of J2(k−j)−1

with j strictly smaller than i. This shows that J2(k−i)−1 has to correspond to zk−i−1, i.e. Mk−i−1.

We conclude
Mi

∼= J2i+1. (8.15)

Suppose now that k > p− k. We then have

Jk ⊗ Jk = J1 ⊕ J3 ⊕ · · · ⊕ J2(p−k)−1 ⊕ (p− 2k)Jp. (8.16)

As before, a generator of Mi
∼= Jp has to have degree ≤ i+ k − p. This is a negative number for i < p− k,

which implies that the indecomposable modules M0,M1, . . . ,Mp−k−1 correspond to J1, J3, . . . , J2(p−k)−1

(not necessarily in that order yet). This gives an exhaustive list for these modules as there are p− k modules
in each list, and we can thus conclude that the indecomposable modules Mp−k,Mp−k+1, . . . ,Mk−1 are all
isomorphic to Jp. Continuing in the same way from Mp−k−1 downward, we conclude that

Mi
∼= J2i+1 for i < p− k, and Mi

∼= Jp for i ≥ p− k. (8.17)

■

Remark 8.1.2. The above lemma shows that Lk ⊗ Lk and Lp−k ⊗ Lp−k are isomorphic objects but have
braidings that only agree up to a sign. In particular, applying this to L1 ⊗ L1 = L1 (which has trivial
braiding through Lemma 3.6.5) and Lp−1 ⊗ Lp−1 = L1, this shows that the fusion subcategory spanned by
L1 and Lp−1 is symmetric tensor equivalent to sVectK.

Moreover, this shows that SnLk = ∧nLp−k and ∧nLk = SnLp−k for all even n. Lk ⊗ Lk
∼= Lp−k ⊗ Lp−k

shows that ⊗nLk
∼= ⊗nLp−k whenever n is even. Lemma 8.1.1 shows that γ(Lk,Lk)

= −γ(Lp−k,Lp−k)
,

which shows that the action of an element σ ∈ Sn is trivial on ⊗nLk if and only if the action of sgn(σ)σ
is trivial on ⊗nLp−k . This then implies that ⊗nLk = ⊗nLp−k

f→ X is a coequaliser of the morphisms
σ : ⊗nLk → ⊗nLk if and only if it is a coequaliser of the morphisms sgn(σ)σ : ⊗nLp−k → ⊗nLp−k . We
conclude that SnLk = ∧nLp−k .

Note that we do indeed find

dim(∧nLp−k) =

(
p− k

n

)
=

(p− k)(p− k − 1) · · · (p− k − n+ 1)

n!

= (−1)n
k(k + 1) · · · (k + n− 1)

n!
=

(
k + n− 1

n

)
= dim(SnLk)

. (8.18)

The above lemma also allows us to explicitly determine the symmetric and exterior square of a simple ob-
ject.

Proposition 8.1.3. Let p > 2 be prime and let Lk be the simple object of dimension k in Verp. We have

S2Lk =

min(k,p−k)−1
2⊕

i=1

L4i−3 and ∧2 Lk =

min(k,p−k)
2⊕

i=1

L4i−1 if k is odd, (8.19)

S2Lk =

min(k,p−k)
2⊕

i=1

L4i−1 and ∧2 Lk =

min(k,p−k)−1
2⊕

i=1

L4i−3 if k is even. (8.20)
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8 Algebras in the Verlinde Category

Proof. S2Lk is the coequaliser of idLk⊗Lk
and γ(Lk,Lk)

, and∧2Lk is the coequaliser of idLk⊗Lk
and−γ(Lk,Lk)

.
In particular, any direct summand of S2Lk should be such that γ(Lk,Lk)

◦ inc = inc, and any direct summand
of ∧2Lk should be such that γ(Lk,Lk)

◦ inc = − inc. Lemma 8.1.1 now shows that the above decompositions
hold. ■

8.1.2 Algebras on simple objects

To understand the behaviour of algebras in any symmetric fusion category, a natural first step is to study
the algebras defined on simple objects. Such algebras always have trivial automorphism groups by Schur’s
lemma 2.4.10. In FinVectK, these algebras are rather trivial, since the only simple object is K. In contrast,
the category Verp contains multiple simple objects, which opens the possibility of constructing non-trivial
algebra structures on them.

On which simple objects do non-zero algebra structures exist?

Lemma 8.1.4. Let p > 2 be prime. The only simple objects that admit a non-zero algebra structure are those
Lk for which k is odd and 3k ≤ 2p− 1. This algebra structure is then unique up to isomorphism.

If k is odd, and 3k ≤ 2p− 1, then

1. if k−1
2 is even, then the unique algebra structure on Lk is commutative, this means that the algebras on

L1, L5, L9, . . . are commutative,

2. if k−1
2 is odd, then then unique algebra structure on Lk is anti-commutative, this means that the algebras

on L3, L7, L11, . . . are anti-commutative.

Proof. Let µ : Lk ⊗ Lk → Lk be a morphism. For any decomposition Lk ⊗ Lk = X1 ⊕ · · · ⊕ Xn into
simple objects, we have µ = µ ◦ (incX1 ◦ projX1

+ · · ·+ incXn ◦ projXn
). Schur’s lemma 2.4.9 implies that

µ ◦ incXi
is non-zero if and only if Xi

∼= Lk , and µ ◦ incXi
is then just a scalar through Schur’s lemma over

algebraically closed fields 2.4.10.

Recall

Lk ⊗ Lk =

min(k,p−k)⊕
i=1

L2i−1. (8.21)

There is a copy of Lk in any decomposition of Lk ⊗Lk into simple objects if and only if k is odd and k+1
2 ≤

p−k (equivalently, 3k ≤ 2p−1), and there is then exactly one copy. This implies that µ = µ◦incLk
◦ projLk

,
and is hence the composition of an isomorphism and projLk

. This proves the first statement.

Suppose that k is odd and 3k ≤ 2p− 1, and that we are provided with the decomposition from Lemma 8.1.1.
Let µ = projLk

be the unique morphism up to isomorphism. Lemma 8.1.1 shows that

µ ◦ γ(Lk,Lk)
= (−1)

k−1
2 µ, (8.22)

which proves the result. ■

Remark 8.1.5. Note that Schur’s lemma 2.4.9 implies that any algebra structure on a non-zero simple object
not isomorphic to the monoidal unit cannot be unital.

Example 57. We perform some explicit computations of algebras on simple objects in Verp. Since this is
currently the only meaningful way to gain insight into these algebras, we carry out these computations in
the parent category FinRepK(αp) = K[αp]FinMod.

As L1 is the monoidal unit, we know that the unique non-zero algebra structure on this object is (L1, ρL1 =
λL1).
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8 Algebras in the Verlinde Category

Lemma 8.1.4 shows that there is a unique non-zero algebra structure on L3 if and only if 9 ≤ 2p − 1, i.e. if
p ≥ 5. Lemma 8.1.1 shows that we have the following decomposition in FinRepK(αp) for any algebraically
closed field K of characteristic p ≥ 5

J3 ⊗ J3 = J1 ⊕ J3 ⊕ J5 = ⟨1⊗ t2 − t⊗ t+ t2 ⊗ 1⟩ ⊕ ⟨1⊗ t− t⊗ 1⟩ ⊕ ⟨1⊗ 1⟩. (8.23)

The unique non-zero algebra structure on L3 lifts to projJ3
, which implies that(

a+ bt+ ct2
)
·
(
a+ bt+ ct2

)
=

1

2

(
(ab− ab) + (ac− ca)t+ (bc− bc)t2

)
. (8.24)

Any linear equation satisfied by this algebra will also be satisfied by the semisimplified algebra on L3. In
particular, as we will see below, this is a Lie algebra. Note that this algebra is not associative.

Similarly, one obtains decompositions and algebras on J5, J7, . . .

The structure of algebras on simple objects

To prove that the unique algebras on simple objects have a certain structure, we first introduce the notion of
external dimension (which essentially coincides with the usual vector space dimension), and establish a few
preliminary results using this concept.

Definition 8.1.6 (External and internal dimension of objects). Let C be a symmetric tensor category
over a field of characteristic p > 0 in which every object admits a decomposition into indecomposable
objects. Proposition 4.5.3 shows that dim(A) ∈ Fp for any object A ∈ Ob (C).

Let X ∈ Ob (C) be an indecomposable object. We define the external dimension of X , denoted extdim(X),
to be the unique integer in {0, 1, . . . , p− 1} corresponding to dim(X) ∈ Fp.

Now let A ∈ Ob (C) be an arbitrary object with a decomposition A ∼= X1 ⊕ · · · ⊕Xn into indecomposable
summands. We define

extdim(A) =

n∑
k=1

extdim(Xk), (8.25)

which is well-defined by the Krull-Schmidt theorem 2.4.4.

Note that this external dimension satisfies dim(A) ≃ extdim(A) mod p, where dim(A) denotes the “in-
ternal” dimension as introduced in Chapter 3.

Lemma 8.1.7. Let K be an algebraically closed field of characteristic p > 0, and let F : FinRepK(αp) =

K[αp]FinMod → FinVectK be the forgetful functor. For any A ∈ Ob
(
FinRepK(αp)

)
we have

extdimFinRepK(αp)(A) = extdimFinVectK(F (A)). (8.26)

Proof. As F is braided monoidal, we find F (dimFinRepK(αp)(A)) = dimFinVectK(F (A)). As F is also
faithful, we then find dimFinRepK(αp)(A) = dimFinVectK(F (A)).

This then implies that extdimFinRepK(αp)(A) = extdimFinVectK(F (A)) for any A ∈ Ob (C) such that
extdimFinRepK(αp)(A) < p, in particular for indecomposable objects. Indeed, the indecomposable K[αp]-
modules K[t]/(tk) have external and internal dimension k as K-vector spaces.

Now, suppose that A = X1 ⊕ · · · ⊕Xn with Xk indecomposable. We then find

extdim(A) =

n∑
k=1

extdim(Xk) =

n∑
k=1

extdim(F (Xk)) = extdim(F (A)). (8.27)

■
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Proposition 8.1.8. Let p be prime. For any A ∈ Ob
(
Verp

)
with extdim(A) < p, we have

∧extdim(A)A = 1. (8.28)

In particular, for the simple objects Lk in Verp, ∧kLk = L1 = 1.

Proof. Let X ∈ Ob
(
FinRepK(αp)

)
be such that S(X) = A and extdim(X) = extdim(A), where S :

FinRepK(αp) → Verp is the semisimplification functor.

Let n ∈ N, and let an : X⊗n → X⊗n be the skew-symmetriser introduced in Proposition 4.5.5. As the
semisimplification functor S : FinRepK(αp) → Verp is braided monoidal and additive, we know that
an = S(an) is the skew-symmetriser on A⊗n.

coim(an) is a split epimorphism (Lemma 4.5.7), which implies that coim(S(an)) = S(coim(an)). Proposi-
tion 4.5.5 then shows that S(∧nX) = ∧nA.

Setting n = extdim(A) = extdim(X), we know that ∧extdim(X)X = 1, hence that ∧extdim(A)A = 1. ■

Proposition 8.1.8 allows us to prove a result about the structure of the algebras on simple objects.

Definition 8.1.9 (Generalised Lie algebras). Let C be a symmetric tensor category. We call an algebra
(A,µ) in C a generalised n-Lie algebra (with n+2 smaller than the characteristic of the field if it is non-zero)
if

1. (A,µ) is anti-commutative,

2. µ is such that for any homogeneous polynomial p(µ) : A⊗(n+2) → A⊗(n+2) of degree n + 1 in µ,
constructed using compositions and tensor products of µ and idA

1, we have

p(µ) ◦ an+2 = 0, where an+2 : A⊗(n+2) → A⊗(n+2) is the skew-symmetriser. (8.29)

We call an algebra (A,µ) a generalised n-anti-Lie algebra if

1. (A,µ) is commutative,

2. µ is such that for any homogeneous polynomial p(µ) : A⊗(n+2) → A⊗(n+2) of degree n + 1 in µ,
constructed using compositions and tensor products of µ and idA, we have

p(µ) ◦ sn+2 = 0, where sn+2 : A⊗(n+2) → A⊗(n+2) is the symmetriser. (8.30)

Remark 8.1.10. Let K be a field that is not of characteristic two. In S3 we have (12)(23) = (123), (13)(23) =
(132) = (123)2, (23)(23) = 1. For an anti-commutative algebra (A,µ), we have µ ◦ (idA ⊗ µ) ◦ τ =
−µ ◦ (idA ⊗ µ) where τ represents (23). This then implies that µ ◦ (idA ⊗ µ) ◦ a3 = 2µ ◦ (idA ⊗ µ) ◦
(idA⊗A⊗A + σ + σ2) where σ represents (123) or (132).

Also, µ ◦ (idA ⊗ µ) = −µ ◦ γ(A,A) ◦ (idA ⊗ µ) = −µ ◦ (µ⊗ idA) ◦ γ(A,A⊗A), which shows that the Jacobi
identities on µ ◦ (idA ⊗ µ) and µ ◦ (µ⊗ idA) are equivalent.

We conclude that a generalised 1-Lie algebra is simply a Lie algebra.

Corollary 8.1.11. Let p > 2 be prime and let Lk be a simple object of odd dimension k in Verp that admits an
algebra structure.

1. If k−1
2 is odd, then Lk equipped with the unique non-zero algebra structure is a generalised (k − 2)-Lie

algebra.

2. If k−1
2 is even, then Lk equipped with the unique non-zero algebra structure is a generalised anti-(p −

k − 2)-Lie algebra.

1In degree one we have µ, in degree two we have linear combinations of µ ◦ (idA ⊗ µ) and µ ◦ (µ⊗ idA), and so forth.
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Proof. Suppose first that k−1
2 is odd. Lemma 8.1.4 shows that the algebra structure onLk is anti-commutative.

Let f : L⊗k
k → Lk be any morphism. We find f ◦ ak = 0 as it factors through Coim(ak) = ∧kLk = 1

(Proposition 8.1.8). In particular, this is true when setting f = p(µ) as in Definition 8.1.9.

When k−1
2 is even, we find Sp−kLk

∼= ∧p−kLp−k = 1 (Remark 8.1.2), and the result follows with a similar
proof. ■

Remark 8.1.12. More generally, any anti-commutative algebra (A,µ) in Verp with extdim(A) < p that does
not contain 1 is a generalised (extdim(A)− 2)-Lie algebra.

We can now list the algebras on simple objects in some small characteristics.

1. In Ver2 ≃ FinVectK and Ver3 ≃ FinsVectK there is only the trivial monoidal unit algebra on L1.

2. Ver5 and Ver7 have two non-zero algebras on simple objects: the trivial one on L1, and a Lie algebra
on L3.

3. Ver11 has four non-zero algebras: the trivial one on L1, a Lie algebra on L3, a generalised 3-anti-Lie
algebra on L5, and a generalised 5-Lie algebra on L7.

We have computational evidence, obtained using SageMath, that the unique algebra on L7 satisfies the
following generalised Jacobi identity(
µ ◦ (idA ⊗ µ) ◦ (idA⊗A ⊗ µ) + µ ◦ (idA ⊗ µ) ◦ (idA ⊗ µ⊗ idA) + µ ◦ (µ⊗ µ)

)
◦cyclic permutations = 0.

(8.31)
This is an equation in 4 variables, and not in 7 variables like in the above. In Ver11, it might be possible
to explain this through its interaction with L4 (as 4 = 11 − 7, see Remark 8.1.2). However, even if this
explanation holds in this specific case, this does not give an explanation in higher characteristics. It is thus
clear that our discussion is far from complete.

Algebras in Verp obtained from algebras on simple objects

Let A ∈ Ob
(
Verp

)
be an arbitrary object. This object has a decomposition into simple objects A = n1L1 ⊕

· · · ⊕ np−1Lp−1, which is unique up to isomorphism through the Krull-Schmidt theorem 2.4.4.

The unique algebra structure on simple objects allows us to define special algebra structures on A. Given a
subset S of the indices k, i such that there is a copy Li

k
∼= Lk in the direct sum decomposition, we define

µS : A⊗A → A by setting

projiLk
◦µS ◦ (inciLk

⊗ inciLk
) = µLk

for all (k, i) ∈ S , and setting all other components to zero. (8.32)

This implies that
µS =

∑
(k,i)∈S

inciLk
◦µLk

◦ (projiLk
⊗ projiLk

) (8.33)

These algebras can have non-trivial automorphism groups, we can permute different copies corresponding
to the same simple object.

8.2 On the semisimplification of algebras

8.2.1 A conjecture on Lie algebras in Verp

Kannan’s construction of exceptional Lie superalgebras begs the question how powerful the semisimplifica-
tion process on Lie algebras is. More specifically, the following question sparks attention: “Can every Lie
algebra inVerp be obtained as the semisimplification of a Lie algebra inFinRepK(αp) = K[αp]FinMod?”

The converse is definitely true: any algebra in FinRepK(αp) satisfying a set of linear axioms (i.e. axioms
which can also be expressed in tensor categories) gets mapped to an algebra satisfying the same axioms in
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Verp. In particular, this implies that Lie algebras get mapped to Lie algebras. Nonetheless, there could be Lie
algebras in Verp for which any parent (i.e. an algebra in FinRepK(αp) that gets mapped to this algebra in
Verp after semisimplification) is not a Lie algebra.

We conjecture the following.

Conjecture 8.2.1. Let K be an algebraically closed field of characteristic p > 2 and let Verp be the semisim-
plification of FinRepK(αp) = K[αp]FinMod, i.e. the Verlinde category. There exist Lie algebras in Verp that
cannot be constructed as the semisimplification of a Lie algebra in FinRepK(αp) = K[αp]FinMod, i.e. a Lie
algebra equipped with a nilpotent derivation of order ≤ p.

At first glance, it may seem obvious that this conjecture must be true: the Verlinde category is significantly
richer than the classical categories VectK and sVectK, so how could every Lie algebra in such a richer
setting arise from a classical Lie algebra?

However, the question is more subtle than it appears. One must take into account the fact that we can freely
add any number of copies of Jp to any parent (or, more generally, any negligible morphism). More precisely,
consider an algebra (A,µ) in Verp, and let (A,µ) be any parent of (A,µ). Then any algebra (A′, µ′) with
A′ = A⊕nJp, and such that µ = projA ◦µ′◦(incA ⊗ incA), also maps to (A,µ) under the semisimplification
functor. This allows for a lot of freedom!

Remark 8.2.2. Adding multiple copies of Jp to a parent was a strategy the author attempted in an effort to
disprove Conjecture 8.2.1. However, an important verification (that an algebra structure was well-defined)
was overlooked, rendering the argument invalid.

A second attempt, this time aiming to prove Conjecture 8.2.1, focused on Lie algebras satisfying the celebrated
Poincaré–Birkhoff–Witt (PBW) theorem. It is well known (see [Eti18; Ven23]) that not every Lie algebra
in Verp satisfies the PBW theorem, whereas every Lie algebra in FinRepK(αp) does (for p > 2). So,
once could hope that the semisimplification functor preserves the PBW property. However, this approach
quickly encounters difficulties: the semisimplification functor is not exact, which implies that the universal
enveloping algebra of a Lie algebra in FinRepK(αp) is not guaranteed to map to the universal enveloping
algebra of the corresponding Lie algebra in Verp.

Perhaps the most compelling evidence in support of Conjecture 8.2.1 is the following theorem, which shows
that affine algebraic groups in Verp can be described as a pair consisting of a classical affine (linear) algebraic
group and a Lie algebra in Verp satisfying the PBW theorem.

Theorem 8.2.3 ([Ven23, Theorem 1.2]). The category of affine algebraic groups in Verindp is equivalent to the
category of Harish-Chandra pairs in Verp. Harish-Chandra pairs are pairs (G0, g) of an affine algebraic group
G0 over K and a Lie algebra g in Verp such that the induced Lie algebra induced on the copies of the monoidal
unit corresponds to the Lie algebra of G0, i.e. g0 = Lie(G0).

The Harish-Chandra pair corresponding to an affine algebraic group G in Verindp is (G0,Lie(G)), where G0 is
the linear algebraic group obtained by restricting to the fusion subcategory generated by the monoidal unit.

If Conjecture 8.2.1 holds true, then it could potentially be straightforward to give a negative answer to
[CEO24a, Question 4.6]. This question asks whether all invariantless Lie algebras in Verp (i.e. Lie algebras
(A,µ) such that HomVerp(1, A) = 0, or equivalently such that A does not contain a direct summand iso-
morphic to 1) can be constructed as the semisimplification of certain Lie algebras equipped with particular
derivations.

8.2.2 A weaker version of our conjecture on Lie algebras

Our interest lies in the structure of more general algebras in Verp, not just Lie algebras. This motivates the
following weaker version of Conjecture 8.2.1. The author would be very surprised if this conjecture turned
out to be false.
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Conjecture 8.2.4. Let K be an algebraically closed field of characteristic p > 2 and let Verp be the semisimpli-
fication of FinRepK(αp) = K[αp]FinMod, i.e. the Verlinde category. There exists a type of algebra (defined in
the general setting of symmetric tensor categories) for which there is an instance in Verp that cannot be obtained
as the semisimplification of an algebra of the same type in FinRepK(αp).

If this conjecture holds true, then it would probably introduce a threshold of complexity for types of algebras
after which we obtain a version of Conjecture 8.2.1.

We can give examples of types algebras that definitely lie within this threshold, even for more general quo-
tients over ideals.

Proposition 8.2.5. Let C be a monoidal category and let I ≤ C be a monoidal ideal. Any algebra (A,µ) in
C/I can be obtained as the image of an algebra (A,µ) in C, i.e. A = quotI(A) and µ = quotI(A).

Proof. This follows from the fact that quotI is a full functor that is surjective on objects. ■

Proposition 8.2.6. Let C be a braided monoidal category that is enriched over a ring in which 2 is invertible,
and let I ≤ C be an ideal. Any commutative or anti-commutative algebra in C/I can be obtained as the
projection of a commutative or anti-commutative algebra in C under quotI .

Proof. Let (A,µ) be a commutative algebra in C/I . Proposition 8.2.5 implies that there exists an algebra
(A,µ) in C such that quotI(A) = A and quotI(µ) = µ. As 2 is invertible, we know that µ ◦ a2 = 0 where
a2 is the skew-symmetriser on A ⊗ A. Note that a2 = quotI(a2), where a2 is the skew-symmetriser on
A⊗A. The equality µ ◦ a2 = 0 implies that µ ◦ a2 ∈ I . It is then clear that (A,µ−µ ◦ a2) is an algebra that
is also mapped to (A,µ) under quotI , and that this algebra is commutative as (µ− µ ◦ a2) ◦ a2 = 0. ■
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A.1 Inleiding

De theorie van (symmetrische) tensorcategorieën, zie bijvoorbeeld [Lan78; DM82; Del90; Del02; EGNO15], is
een natuurlijke setting voor veel concepten in algebra. Het onderwerp van deze thesis is daar een voorbeeld
van; we zijn geı̈nteresseerd in niet-associatieve, niet-unitale algebra’s in symmetrische tensorcategorieën.

Tensorcategorieën zijn categorieën die bijna alle eigenschappen hebben die de categorie van vectorruimten
over een veld heeft. Meer specifiek zijn de ruimten van morfismen in tensorcategorieën vectorruimten,
bestaan er tensorproducten van objecten en morfismen A⊗B en f ⊗ g, en zijn er dualen van objecten.

Recent toonde Arun S. Kannan aan in [Kan24] dat exceptionele Lie-superalgebra’s kunnen geconstrueerd
worden door gebruik te maken van Lie-algebra’s in een “exotische” symmetrische tensorcategorie: de Verlin-
decategorie Verp. Deze categorie speelt ook een belangrijke rol binnen de classificatie van pre-Tannakiaanse
symmetrische tensorcategorieën over algebraı̈sch gesloten velden van positieve karakteristiek. In karakter-
istiek nul toonde Pierre Deligne in [Del90; Del02] aan dat elke pre-Tannakiaanse symmetrische tensorcate-
gorie over een algebraı̈sch gesloten veld van karakteristiek nul een representatiecategorie is van een affien
supergroepschema. In [Ost20] toonde Victor Ostrik aan dat elke symmetrische fusiecategorie over een al-
gebraı̈sch gesloten veld van karakteristiek p > 0 een representatiecategorie is van een affien groepschema
in Verp. Dit toont aan dat Verp een gelijkaardige rol speelt in positieve karakteristiek als de categorie van
supervectorruimten in karakteristiek nul.

Deze observatie van Kannan toont aan dat niet-associatieve algebra’s in exotische tensorcategorieën zeer
interessant kunnen zijn, en dit is dan ook de motivatie voor deze thesis. De constructie van Kannan, en
tevens de constructie van Verp, verloopt via semisimplificatie. Semisimplificatie steunt op het feit dat veel
tensorcategorieën (in het bijzonder symmetrische tensorcategorieën) zich gedragen als lokale ringen, in de
zin dat zij een uniek maximaal tensorideaal hebben. Het quotiënt van de categorie hierover wordt dan de
semisimplificatie van deze categorie genoemd, en dit levert een semisimplificatiefunctor op van de originele
categorie naar de semisimplificatie. Deze semisimplificatiefunctor kunnen we toepassen op Lie-algebra’s en
dit levert dan Lie-algebra’s op in de semisimplificatie. In het bijzonder werkt dit voorVerp, gedefinieerd als de
semisimplificatie van de representatiecategorie van de affiene algebraı̈sche groep αp, en omdat Verp de cate-
gorie van supervectorruimten als deelcategorie bevat kunnen we dan projecteren naar Lie-superalgebra’s.

Naast constructies die gerelateerd zijn aan de constructie van Lie-algebra’s van Kannan, blijven niet-associatieve
algebra’s in tensorcategorieën vrij mysterieus.

Om deze reden hebben wij in deze thesis vrij veel aandacht gespendeerd aan het semisimplificatieproces. Op
sommige plekken zijn we in onze discussie dan ook dieper gegaan dan in de literatuur. Daarnaast hebben
we ook veel tijd besteed aan het beschrijven van de nodige achtergrond om met niet-associatieve algebra’s
te kunnen werken.

A.2 Samenvatting

Hoofdstuk 1: Algemene Categorieën

We beginnen met het bespreken van categorieën, functoren en natuurlijke transformaties. Vervolgens be-
spreken we kort limieten en colimieten, die de begrippen product en coproduct veralgemenen. Daarna be-
spreken we de completering van categorieën met betrekking tot limieten of colimieten. Dit leidt ons op een
natuurlijke manier naar de Yoneda- en co-Yoneda-lemma’s. Functoren die limieten of colimieten behouden
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zijn van bijzonder belang, en adjuncties vormen belangrijke voorbeelden hiervan. Dit is dan ook het volgende
dat we bespreken.

We sluiten het hoofdstuk af met een bespreking van categorificatie, een proces waarbij verzamelingtheoretis-
che concepten worden vertaald naar hun categorische analogen.

Dit hoofdstuk bevat, net zoals de volgende drie hoofdstukken, geen nieuwe resultaten of bewijzen en som-
mige bewijzen zullen worden weggelaten.

Hoofdstuk 2: Abelse Categorieën

In dit hoofdstuk bespreken we categorieën uitgerust met een optelling op morfismen. Dergelijke categorieën
worden pre-additief genoemd en als ze daarnaast ook directe sommen en een nulobject bezitten, heten ze
additief. Vervolgens behandelen we additieve categorieën die kernen en cokernen toelaten, wat ons leidt tot de
begrippen Karoubiaanse en pre-abelse categorieën. Abelse categorieën worden daarna geı̈ntroduceerd als pre-
abelse categorieën waarin de eerste isomorfie-stelling geldt. Korte exacte rijen spelen een fundamentele rol in
de studie van abelse categorieën en laten toe structuurbehoudende functoren tussen dergelijke categorieën
te definiëren.

We sluiten het hoofdstuk af met een bespreking van enkele van de belangrijkste stellingen in de theorie van
abelse categorieën: de Jordan-Hölder-stelling, de Krull-Schmidt-stelling en het lemma van Schur.

Hoofdstuk 3: Monoı̈dale Categorieën

Het derde en belangrijkste hoofdstuk van het inleidende deel van deze thesis bespreekt monoı̈dale categorieën.
We beginnen met het introduceren van de basistheorie van monoı̈dale categorieën. Dit zijn, ruwweg, cate-
gorieën uitgerust met een bifunctor ⊗, het zogenaamde monoı̈dale product of tensorproduct, die de objecten
van de categorie met de structuur van een monoı̈de voorziet. In het bijzonder bestaat er een eenheid voor
deze operatie, dat we het monoı̈dale eenheidsobject noemen.

Monoı̈dale categorieën zijn ontworpen om te lijken op de categorie van vectorruimten uitgerust met het
gebruikelijke tensorproduct, en veel definities in de theorie zijn gemotiveerd door deze analogie. Zo zullen
we de begrippen dualen van objecten en het spoor van een morfisme bespreken. Vervolgens bestuderen we
gevlochten monoı̈dale categorieën. Een vlechting is een natuurlijk isomorfisme dat lijkt op de verwisselingsaf-
beelding V ⊗W → W ⊗ V : v ⊗ w 7→ w ⊗ v voor vectorruimten.

Hoofdstuk 4: Tensorcategorieën

In het laatste hoofdstuk van het inleidende deel bespreken we tensorcategorieën. Ruwweg zijn dit cate-
gorieën die op natuurlijke wijze een abelse structuur combineren met een monoı̈dale structuur die dualen
bezit. Dit impliceert dat het monoı̈dale product en de dualisatiefunctoren structuurbehoudend moeten zijn
als functoren tussen abelse categorieën.

We beginnen met het onderzoeken van de endomorfismen van het monoı̈dale eenheidsobject in een monoı̈dale
categorie. Wanneer de categorie bovendien pre-additief is, vormen deze endomorfismen een ring, en elke
andere morfismen-verzameling krijgt de structuur van een bimodule over deze ring.

Vervolgens richten we ons op categorieën die op natuurlijke wijze een abelse en een monoı̈dale structuur
combineren, wat leidt tot de begrippen multiringcategorieën en ringcategorieën. Daarna voegen we dualen
toe aan het geheel, wat resulteert in multitensorcategorieën en tensorcategorieën.

We sluiten af met een bespreking van symmetrische tensorcategorieën. We leggen in meer detail uit hoe
de werking van de symmetrische groep op tensorproductmachten van objecten het mogelijk maakt om
symmetrische en antisymmetrische producten te definiëren. We gaan ook kort in op de classificatie van
pre-Tannakiaanse symmetrische tensorcategorieën, zoals eerder vermeld. Pre-Tannakiaanse symmetrische
tensorcategorieën zijn zodanig dat tensormachten van objecten “subexponentieel groeien”.
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Hoofdstuk 5: Semisimplificatie

In dit hoofdstuk bespreken we semisimplificatie in vrij veel detail. We beginnen met een herhaling van
enkele basisbegrippen uit de theorie van lokale ringen en laten vervolgens zien hoe onontbindbare objecten
in abelse categorieën kunnen worden gekarakteriseerd via lokale ringen: een object in een abelse categorie
is onontbindbaar, wat wil zeggen dat het niet geschreven kan worden als een directe som van twee niet-
nul objecten, als en slechts als zijn endomorfismenring een lokale ring is. Deze karakterisering speelt een
belangrijke rol in de theorie van idealen in abelse categorieën.

Meer in het algemeen is elke pre-additieve categorie uitgerust met een optelling en een samenstelling, wat
ervoor zorgt dat dit een categorificatie van een ring is. Dit stelt ons in staat om idealen in pre-additieve
categorieën te definiëren als categorische analogieën van idealen in ringen. In het bijzonder bespreken we
het radicaal, een speciaal ideaal dat lijkt op het Jacobson-radicaal van ringen. We laten zien dat het radicaal
waardevolle informatie bevat over de vraag of een categorie semisimpel is, wat wil zeggen of elk object kan
worden ontbonden als directe som van enkelvoudige (of simpele) objecten, objecten die onontbindbaar zijn
en geen echte deelobjecten hebben.

Vervolgens behandelen we idealen in pre-additieve categorieën die ook een monoı̈dale structuur dragen,
wat leidt tot het begrip tensoridealen. We tonen aan hoe dualen constructies van dergelijke idealen mo-
gelijk maken en bewijzen het bestaan van een uniek maximaal tensorideaal, dat via het radicaal kan worden
geconstrueerd. Dit resultaat illustreert een analogie tussen tensorcategorieën en lokale ringen. Het hoofd-
stuk eindigt met de beschrijving van de morfismen in dit maximale tensorideaal, zowel in het kader van de
zogenaamde verwaarloosbare morfismen uit de literatuur als in een iets algemenere context.

Dit hoofdstuk bevat enkele originele bijdragen. In het bijzonder is Sectie 5.5.2 volledig origineel (zij het
duidelijk geı̈nspireerd door bestaande literatuur). De resultaten in Secties 5.2-5.3 zijn grotendeels gebaseerd
op het artikel [AKO02], terwijl Sectie 5.5.1 is gebaseerd op [Etingof2018].

Hoofdstuk 6: Algebra’s in Monoı̈dale Categorieën

Zoals eerder vermeld, stellen monoı̈dale structuren op categorieën ons in staat om een aantal interessante al-
gebraı̈sche objecten te construeren. Dit hoofdstuk is een voorbeeld van dat fenomeen: we bespreken algebra’s
in monoı̈dale categorieën, dit zijn objecten A uitgerust met een morfisme µ : A⊗A → A, de vermenigvuldig-
ing. Onze behandeling van algebra’s is volledig algemeen; we veronderstellen niet dat algebra’s associatief
zijn of een eenheid hebben.

We bespreken ook modulen en idealen voor algebra’s, en leggen uit hoe de werking van de symmetrische
groep op tensormachten in symmetrische monoı̈dale categorieën leidt tot een natuurlijke veralgemening van
Lie-algebra’s.

We eindigen met een bespreking van Hopf-algebra’s en hun representatiecategorieën, die aanleiding geven
tot symmetrische tensorcategorieën. Dit is een zeer belangrijke constructie, zoals blijkt uit de classificatie
van pre-Tannakiaanse symmetrische tensorcategorieën. Vervolgens bespreken we affiene groepschema’s in
symmetrische tensorcategorieën.

Dit hoofdstuk bevat één oorspronkelijke bijdrage die, voor zover wij weten, niet in de literatuur voorkomt: de
constructie van een ideaal dat wordt gegenereerd door een subobject in algemene niet-associatieve algebra’s,
te vinden in Sectie 6.2.3.

Hoofdstuk 7: De Verlindecategorie

In dit zeer korte hoofdstuk bespreken we de Verlindecategorie Verp. We beginnen met enkele constructies
voor deze categorie als semisimplificatie van een “klassieke” tensorcategorie. In het bijzonder bespreken
we uitgebreid de constructie van Verp als de semisimplificatie van de representatiecategorie van de affiene
algebraı̈sche groep αp over een algebraı̈sch gesloten veld van karakteristiek p > 0. Vervolgens onderzoeken
we de structuur van tensorproducten in deze categorie en wat dit ons vertelt over het tensorproduct in Verp.
We sluiten af met een bespreking van subcategorieën van Verp.
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Dit hoofdstuk bevat geen originele resultaten.

Hoofdstuk 8: Algebra’s in de Verlindecategorie

Het laatste hoofdstuk betreft algebra’s in de Verlindecategorie Verp. We onderzoeken de vlechtstructuur
op de enkelvoudige objecten in deze categorie en leggen uit wat de implicaties daarvan zijn voor algebra’s
op deze objecten. We laten zien dat de enige enkelvoudige objecten die een algebra-structuur toelaten die
met oneven dimensie zijn en dat de helft van deze algebra’s aanleiding geeft tot wat wij veralgemeende Lie-
algebra’s noemen.

We voegen ook een korte bespreking toe over de constructie van Lie-algebra’s via semisimplificatie en schet-
sen enkele vragen waarvan we hopen dat ze in toekomstig werk beantwoord zullen worden.

Alle resultaten in dit hoofdstuk zijn nieuw.
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